
Coherence Spring Reference
Documentation

Gunnar Hillert, Ryan Lubke, Vaso Putica, Jonathan Knight

Version 4.0.0

Table of Contents
Legal. 1

1. Coherence Spring Documentation . 2

1.1. About the Documentation. 2

1.2. Getting Help . 2

1.3. What is new? . 3

1.4. First Steps . 3

2. Quickstart . 4

2.1. How to Run the Demo . 4

2.2. Interacting with the Cache . 5

2.3. Behind the Scenes. 8

3. Coherence Spring Core . 10

3.1. Getting Started. 10

3.2. Bootstrapping Coherence . 11

3.3. Using the Default Session . 11

3.4. Configure Multiple Sessions. 12

3.5. Session Configuration Bean Properties . 12

3.6. Dependency Injection . 14

3.6.1. Injecting NamedMap and NamedCache . 14

3.6.1.1. Type Conversion of NamedMap and NamedCache. 15

3.6.1.2. Specify the Map/Cache Name . 16

3.6.1.3. Specify the Owning Session Name . 16

3.6.2. Injecting AsyncNamedMap & AsyncNamedCache . 17

3.6.3. Injecting Views (CQC). 18

3.6.3.1. Specify a View Filter . 18

3.6.3.2. Specify a View Transformer . 19

3.6.4. Injecting a Session . 20

3.6.4.1. Specify a Session Name . 20

3.6.5. Injecting NamedTopic . 21

3.6.5.1. Injecting NamedTopic . 21

3.6.5.2. Injecting a NamedTopic Publisher . 23

3.6.5.3. Injecting a NamedTopic Subscriber . 24

3.7. Events . 25

3.7.1. MapEvent Listeners . 26

3.7.1.1. MapEvent Observer Methods. 26

3.7.1.2. Receive Specific Event Types . 30

3.7.1.3. Filtering Events . 31

3.7.1.4. Transforming Events . 32

3.7.2. Coherence Event Interceptors . 34

3.7.2.1. Event Types. 34

3.7.2.2. Coherence Lifecycle Events . 35

3.7.2.3. Session Lifecycle Events . 36

3.7.2.4. ConfigurableCacheFactory Lifecycle Events. 37

3.7.2.5. Cache Lifecycle Events . 38

3.7.2.6. Entry Events . 40

3.7.2.7. EntryProcessor Events . 42

3.7.2.8. Partition Level Transaction Events. 44

3.7.2.9. Partition Transfer Events . 45

3.7.2.10. Unsolicited Commit Events. 47

3.8. Filter Binding Annotations. 47

3.8.1. Create the filter binding annotation. 48

3.8.2. Create the FilterFactory . 48

3.8.3. Annotate the Injection Point . 50

3.9. Extractor Binding Annotations . 50

3.9.1. Create the extractor binding annotation. 50

3.9.2. Create the ExtractorFactory . 51

3.9.3. Annotate the Injection Point . 52

3.10. Messaging with Coherence Topics . 52

3.10.1. Define Publishers - @CoherencePublisher . 53

3.10.2. Reactive and Non-Blocking Method Definitions . 54

3.10.2.1. Mono Value and Return Type. 54

3.10.2.2. Reactor Flux Value and Return Type . 54

3.10.2.3. Future Return Type . 54

3.10.3. Define Subscribers - @CoherenceTopicListener . 54

3.10.4. Method Parameter Bindings . 55

3.10.5. Committing Messages . 55

3.10.5.1. Default Commit Behaviour . 55

3.10.5.2. Setting Commit Strategy . 56

3.10.5.3. Forwarding Messages with @SendTo. 57

3.11. Cache Store. 58

3.11.1. JPA Repository CacheStore Demo . 59

3.11.1.1. Data Model . 59

3.11.1.2. Writing a JPA Repository CacheStore . 60

3.11.1.3. Embedded Coherence . 61

3.11.1.4. Running the Embedded Sample . 63

3.11.1.5. Using Coherence*Extend. 65

3.11.1.6. Inspecting the Database . 66

4. Coherence Spring Cache . 67

4.1. Introduction. 67

4.2. Configuring Coherence Cache for Spring . 67

4.3. Coherence Caches and Locking. 70

5. Coherence Spring Session . 71

5.1. Getting Started. 71

5.2. POF Serialization . 72

5.3. Spring Session Sample. 73

5.3.1. Start Spring Session with Embedded Coherence Instances . 73

5.3.2. Spring Session with Remote Coherence Instances . 74

5.3.3. Accessing the REST Endpoints . 74

5.3.4. Spring Session Actuator. 74

5.3.5. Generate Docker Image . 75

5.4. Session Expiration Strategies. 75

6. Coherence Spring Data . 76

6.1. Introduction. 76

6.2. Features. 76

6.3. Getting Started. 76

6.4. Defining Repositories. 76

6.4.1. Identifying the Coherence NamedMap . 77

6.5. Mapping Entities. 78

6.6. Using the Repository . 78

6.6.1. Finder Queries . 79

6.7. Projections . 80

6.7.1. Interface-based Projections . 80

6.7.2. Closed Projections. 81

6.7.3. Open Projections . 82

6.7.4. Nullable Wrappers . 83

6.7.5. Class-based Projections (DTOs) . 83

6.7.6. Dynamic Projections . 84

7. Coherence Spring Boot . 85

7.1. Getting Started. 85

7.2. Using Coherence with Spring Boot . 85

7.3. Support of the Spring Boot ConfigData API . 87

7.4. Caching with Spring Boot . 88

7.4.1. Configure Circuit Breakers with Resilience4j . 89

7.4.1.1. Running the Example. 89

7.4.1.2. Monitoring the Circuit Breaker . 91

7.4.1.3. Add Resilience4j Dependencies . 93

7.4.1.4. Resilience4j Annotations . 93

7.5. Configure Hibernate Second-Level Caching . 94

7.5.1. Hibernate Second Level Cache Example. 95

7.5.1.1. Run the Hibernate Application . 95

7.6. Spring Session Support . 97

7.7. Coherence Messaging Support . 98

7.8. Coherence Metrics . 98

7.9. Spring Data Support. 99

8. Coherence Spring Cloud Config . 101

8.1. Overview . 101

8.2. Demo . 101

8.2.1. Configure the Demo Application. 102

8.2.2. Run the Demo Application . 104

8.3. Use Spring Cloud Config Server to Configure Coherence . 104

Legal
Oracle licenses the Oracle Coherence Spring project under the The Universal Permissive License
(UPL), Version 1.0.

The Universal Permissive License (UPL), Version 1.0

Subject to the condition set forth below, permission is hereby granted to any person obtaining a
copy of this software, associated documentation and/or data (collectively the "Software"), free of
charge and under any and all copyright rights in the Software, and any and all patent rights owned
or freely licensable by each licensor hereunder covering either (i) the unmodified Software as
contributed to or provided by such licensor, or (ii) the Larger Works (as defined below), to deal in
both

(a) the Software, and (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if one
is included with the Software (each a "Larger Work" to which the Software is contributed by such
licensors),

without restriction, including without limitation the rights to copy, create derivative works of,
display, perform, and distribute the Software and make, use, sell, offer for sale, import, export, have
made, and have sold the Software and the Larger Work(s), and to sublicense the foregoing rights on
either these or other terms.

This license is subject to the following condition: The above copyright notice and either this
complete permission notice or at a minimum a reference to the UPL must be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1

https://oss.oracle.com/licenses/upl/
https://oss.oracle.com/licenses/upl/

Chapter 1. Coherence Spring Documentation
Welcome to the reference documentation of Coherence Spring, a collection of libraries that will
help you to integrate Oracle Coherence with the wider Spring ecosystem.

Oracle Coherence is a scalable, fault-tolerant, cloud-ready, distributed platform for building grid-
based applications and reliably storing data. The product is used at scale, for both compute and raw
storage, in a vast array of industries such as critical financial trading systems, high performance
telecommunication products and e-commerce applications.

Coherence Spring features dedicated support to bootstrap Oracle Coherence and to inject
Coherence resources into Spring beans as well as to inject Spring beans into Coherence resources.
Spring’s dependency injection (DI) support simplifies application code as Oracle Coherence maps,
caches and topics are just injected instead of being obtained explicitly via Coherence APIs.
Furthermore, using annotated event listener methods simplifies building reactive code that
responds to Coherence cache events.

Before diving into the technical aspects of the reference documentation let’s provide a brief
overview of the Coherence Spring reference documentation, where to start, how to obtain further
helper and more.

1.1. About the Documentation
The Coherence Spring reference guide is available as:

• Multi-page HTML

• Single page HTML

• PDF

1.2. Getting Help
If you run into issues with Spring Coherence, we are here to help.

• Try the Quickstart. The Quickstart will give you an overview of Coherence Spring’s capabilities
and provides a sample application to get you started.

• Learn the Coherence basics. Please have at least some basic understanding of Oracle Coherence
since all Spring Coherence modules depend on it. Check out the Coherence CE web-site for
general Coherence targeted reference documentation.

• Learn the Spring basics. The reference guide assumes that you have a basic understanding of
Spring Framework and Spring Boot. Coherence Spring utilizes several other Spring projects.
Check the spring.io web-site for general reference documentation. If you are starting out with
Spring, try one of the guides or generate a starter project using start.spring.io/.

• Ask a question. Chat with us directly on Slack. We also monitor stackoverflow.com for questions
tagged with oracle-coherence.

• Contribute. Report bugs with Spring Coherence via GitHub Issues. Both, Coherence CE and

2

https://github.com/coherence-community/coherence-spring/
https://coherence.community/
https://spring.io/
https://coherence.community/
https://spring.coherence.community/4.0.0/refdocs/reference//html
https://spring.coherence.community/4.0.0/refdocs/reference//htmlsingle
https://spring.coherence.community/4.0.0/refdocs/reference//pdf/coherence-spring-reference.pdf
https://coherence.community
https://spring.io/projects/spring-framework/
https://spring.io/projects/spring-boot/
https://spring.io/
https://spring.io/guides
https://start.spring.io/
https://join.slack.com/t/oraclecoherence/shared_invite/zt-9ufv220y-Leudk0o5ntgNV0xraa8DNw
https://stackoverflow.com
https://stackoverflow.com/tags/oracle-coherence
https://github.com/coherence-community/coherence-spring/issues/

Coherence Spring are Open Source Software (OSS) under the liberal Universal Permissive
License (UPL). Contributing back is a great way to attain a deeper understanding of our projects.

All of Coherence Spring is open source, including the documentation. If you find
problems with the docs or if you want to improve them, please get involved.

1.3. What is new?
In order to see what changes were made from earlier versions of Coherence Spring, see the Change
History as well as the GitHub Releases page.

1.4. First Steps
If you are getting started with Coherence Spring, start with the Quickstart. It is a great way to see a
working solution quickly. Particularly if you are relatively new to Spring, continue with the
Coherence Spring Boot chapter next.

Another great example application is the Spring Boot implementation of the To-do
List application.

The reference documentation makes a distinction between Spring Framework and Spring Boot. At
its very core, Spring Framework provides Dependency Injection (DI) or Inversion Of Control (IOC)
to Java applications. Furthermore, Spring Framework gives developers comprehensive
infrastructure support for developing Java applications.

Spring Boot on the other hand, is an opinionated extension to the Spring Framework by:

• Eliminating boilerplate configurations

• Providing Auto-Configuration for other Spring modules and third-party integrations

• Metrics + health checks

The vast majority of new Spring projects will utilize Spring Boot. Nonetheless, please also study the
Spring Framework targeted chapters as Spring Frameworks is the foundation for everything
related to Spring Boot.

3

https://github.com/coherence-community/coherence-spring/
https://spring.coherence.community/4.0.0/index.html#/dev/06_history
https://spring.coherence.community/4.0.0/index.html#/dev/06_history
https://github.com/coherence-community/coherence-spring/releases/
https://github.com/coherence-community/todo-list-example/tree/main/java
https://github.com/coherence-community/todo-list-example/tree/main/java
https://spring.io/projects/spring-framework/
https://spring.io/projects/spring-boot/

Chapter 2. Quickstart
In this getting started chapter we will look a demo to illustrate basic usage of Oracle Coherence
when using it with Spring. This demo provides an example of using Coherence Spring’s Cache
Abstraction.

The demo application is basically a super-simple event manager. We can create Events and assign
People to them using an exposed REST API. The data is saved in an embedded HSQL database. The
caching is implemented at the service layer.

When an Event is created, it is not only persisted to the database but also put to the Coherence
Cache. Therefore, whenever an Event is retrieved, it will be returned from the Coherence Cache.
You can also delete Events, in which case the Event will be evicted from the cache. You can perform
the same CRUD operations for people as well.

2.1. How to Run the Demo
In order to get started, please checkout the code from the coherence-community/coherence-
spring[Coherence Spring Repository] GitHub repository.

Clone GitHub Repository

 $ git clone https://github.com/coherence-community/coherence-spring.git
 $ cd coherence-spring

You now have checked out all the code for Coherence Spring. The relevant demo code for this
Quickstart demo is under samples/coherence-spring-demo/.

There you will find 3 Maven sub-modules:

• coherence-spring-demo-classic

• coherence-spring-demo-boot

• coherence-spring-demo-core

The first two Maven modules are essentially variations of the same app. The third module contains
shared code.

coherence-spring-demo-classic Provides a demo using Spring Framework
without Spring Boot

coherence-spring-demo-boot Provides a demo using Spring Boot

coherence-spring-demo-core Contains common code shared between the two
apps

In this chapter we will focus on the Spring Boot version. Since we checked out the project, let’s
build it using Maven:

4

https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache
https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache
http://hsqldb.org/
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Build the project

 $./mvnw clean package -pl samples/coherence-spring-demo/coherence-spring-demo-boot

Now we are ready to run the application:

Run the Spring Boot application

 $ java -jar samples/coherence-spring-demo/coherence-spring-demo-
boot/target/coherence-spring-demo-boot-4.0.0.jar

2.2. Interacting with the Cache
Once the application is started, the embedded database is empty. Let’s create an event with 2 people
added to them using curl:

Create the first event

 curl --request POST 'http://localhost:8080/api/events?title=First%20Event&date=2020-
11-30'

This call will create and persist an Event to the database. However, there is more going on. The
created Event is also added to the Coherence Cache. The magic is happening in the Service layer,
specifically in DefaultEventService#createAndStoreEvent(), which is annotated with
@CachePut(cacheNames="events", key="#result.id").

The cacheNames attribute of the @CachePut annotation indicates the name of the underlying cache to
use. As caches are basically just a Map, we also need a key. In this case we use the expression
#result.id to retrieve the primary key of the Event as it was persisted. Thus, the saved Event is
added to the cache named events and ultimately also returned and printed to the console:

Return result of the created event

 {
 "id" : 1,
 "title" : "First Event",
 "date" : "2020-11-30T00:00:00.000+00:00"
 }

We see that an Event with the id 1 was successfully created. Let’s verify that the cache put worked
by inspecting the cache using the open-source tool VisualVM.

5

https://curl.se/docs/manual.html
https://visualvm.github.io/

Figure 1. VisualVM - Cache Put

Under the MBeans tab you will find the Cache MBeans, including and entry for the events cache,
providing numerous statistical information regarding the cache.

Retrieving Cache Statistics

 $ curl --request GET 'http://localhost:8080/api/statistics/events'

You should see an entry for TotalPuts of 1.

When using VisualVM consider installing the respective Coherence VisualVM
Plugin as it provides some additional insights and visualizations.

Next, lets retrieve the Event using id 1:

Retrieve Event

 curl --request GET 'http://localhost:8080/api/events/1'

The Event is returned. Did you notice? No SQL queries were executed as the value was directly
retrieved from the Cache. Let’s check the statistics again, this time via the Coherence VisualVM
Plugin:

6

https://medium.com/oracle-coherence/open-source-coherence-visualvm-plugin-released-533ea2f576bc
https://medium.com/oracle-coherence/open-source-coherence-visualvm-plugin-released-533ea2f576bc

Figure 2. Cache Statistics via Coherence VisualVM Plugin

We will see now how values are being returned from the cache by seeing increasing cacheHits, e.g.,
"cacheHits" : 1. Let’s evict our Event with id 1 from the cache named events:

Evict Event

 curl --request DELETE 'http://localhost:8080/api/events/1'

If you now retrieve the event again using:

Retrieve Event

 curl --request GET 'http://localhost:8080/api/events/1'

you will see an SQL query executed in the console, re-populating the cache. Feel free to play along
with the Rest API. We can, for example, add people:

Add people

 curl --request POST
'http://localhost:8080/api/people?firstName=Conrad&lastName=Zuse&age=85'
 curl --request POST
'http://localhost:8080/api/people?firstName=Alan&lastName=Turing&age=41'

List people

 curl --request GET 'http://localhost:8080/api/people'

Or assign people to events:

7

Assign People to Events

 curl --request POST 'http://localhost:8080/api/people/2/add-to-event/1'
 curl --request POST 'http://localhost:8080/api/people/3/add-to-event/1'

2.3. Behind the Scenes
What is involved to make this all work? Using Spring Boot, the setup is incredibly simple. We take
advantage of Spring Boot’s AutoConfiguration capabilities, and the sensible defaults provided by
Coherence Spring.

In order to activate AutoConfiguration for Coherence Spring you need to add the coherence-spring-
boot-starter dependency as well as the desired dependency for Coherence.

POM configuration

 <dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-boot-starter</artifactId> ①
 <version>4.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.oracle.coherence.ce</groupId>
 <artifactId>coherence</artifactId> ②
 <version>23.03</version>
 </dependency>

① Activate Autoconfiguration by adding the coherence-spring-boot-starter dependency

② Add the desired version of Coherence (CE or Commercial)

In this quickstart example we are using Spring’s Caching abstraction and therefore, we use the
spring-boot-starter-cache dependency as well:

POM configuration for Spring Cache Abstraction

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-cache</artifactId>
 </dependency>

For caching you also must activate caching using the @EnableCaching annotation.

8

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using-boot-auto-configuration

Spring Boot App configuration

 @SpringBootApplication
 @EnableCaching ①
 public class CoherenceSpringBootDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(CoherenceSpringBootDemoApplication.class, args);
 }

 }

① Activate the Spring Cache Abstraction

Please see the relevant chapter on Caching in the Spring Boot reference guide.

With @EnableCaching in place, Coherence’s autoconfiguration will also provide a
CoherenceCacheManager bean to the application context.

9

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-caching

Chapter 3. Coherence Spring Core
This section dives into the Coherence Spring Core module. Coherence Spring Core provides the
basic support for the Spring Framework.

3.1. Getting Started
To add support for Oracle Coherence to an existing Spring Framework project, you should first add
the required Spring Coherence dependencies to your build configuration:

Example 1. Coherence Spring Dependencies

Maven

<dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-core</artifactId>
 <version>4.0.0</version>
</dependency>

Gradle

implementation("com.oracle.coherence.spring:coherence-spring-core:4.0.0")

Next you also need to add the version of Coherence that your application will be using. Coherence
Spring is compatible with both the open source Coherence CE and the commercial version of Oracle
Coherence. Therefore, we don’t bring in Oracle Coherence as transitive dependency. For example,
to use Coherence CE specify:

Example 2. Oracle Coherence CE Dependency

Maven

<dependency>
 <groupId>com.oracle.coherence.ce</groupId>
 <artifactId>coherence</artifactId>
 <version>23.03</version>
</dependency>

Gradle

implementation("com.oracle.coherence.ce:coherence:23.03")

In order to use the commercial version of Coherence:

10

https://spring.io/projects/spring-framework/

Example 3. Commercial Oracle Coherence Dependency

Maven

<dependency>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>coherence</artifactId>
 <version>14.1.1.2206</version>
</dependency>

Gradle

implementation("com.oracle.coherence.ce:coherence:14.1.1.2206")

Coherence CE versions are available from Maven Central. The commercial
versions of Coherence needs to be uploaded into your own Maven repository.

 Coherence Spring requires as a minimum version Coherence CE 22.06.

3.2. Bootstrapping Coherence
Coherence Spring uses the Coherence bootstrap API introduced in Coherence CE 20.12 to configure
and create Coherence instances. This means that Coherence resources in a Spring application are
typically part of a Coherence Session.

By default, Coherence will start a single Session configured to use the default Coherence
configuration file. This behavior can easily be configured using traditional Coherence using system
properties or using dedicated configuration.

3.3. Using the Default Session
The main building block for setting up Coherence for Spring is the @EnableCoherence annotation.
This annotation will import the CoherenceSpringConfiguration class under the covers. Therefore, you
can alternatively also declare @Import(CoherenceSpringConfiguration.class) instead.

In most use-cases, only a single Coherence Session is expected to be used. Therefore, without
providing any further configuration the default session is configured using the embedded default
configuration file. This results in the application joining Coherence as a cluster member (Session
type SERVER). This is of course not the only way. Coherence Spring support the following 3 session
types:

• SERVER - Join as Coherence cluster member. This is the default session type.

• CLIENT - Connect to Coherence as a Coherence*Extend or gRPC client

• GRPC - Connect to Coherence as gRPC client (deprecated, use CLIENT instead)

11

As of Coherence Spring 4.0, the GRPC session type has been deprecated. Please use
CLIENT instead. Since Coherence 22.06.2, relevant gRPC configuration can be
configured directly in the coherence-cache-config.xml file as described in the
Coherence reference guide chapter Configuring the Coherence gRPC Client.

In order to configure the type of your Session, you may declare a SessionConfigurationBean that
allows to you to not only to set the session type but also to specify a custom Coherence
configuration file or a custom session name.

SessionConfigurationBean

 @Bean
 SessionConfigurationBean sessionConfigurationBeanDefault() {
 final SessionConfigurationBean sessionConfigurationBean =
 new SessionConfigurationBean();
 sessionConfigurationBean.setType(SessionType.SERVER);
 sessionConfigurationBean.setConfig("test-coherence-config.xml");
 return sessionConfigurationBean;
 }

The option of declaring a GrpcSessionConfigurationBean for gRPC clients has been
deprecated. Please use session type CLIENT instead and configure the gRPC relevant
configuration properties in your coherence-cache-config.xml file.

3.4. Configure Multiple Sessions
If you need to configure multiple Coherence sessions, simply define multiple
SessionConfigurationBeans. The auto-configuration will pick those up automatically to configure the
required sessions.

The default session will only exist when zero sessions are specifically configured,
or the default session is specifically configured with the default session name.

3.5. Session Configuration Bean Properties
Depending on the session type the available properties change a bit. The following properties all to
ALL session types.

name

The name of the session. If not set, it will be set to the default session name which is an empty
String.

scopeName

A scope name is typically used in an application where the Coherence cluster member has multiple
sessions. The scope name is used to keep the sessions separate. The scope name will be applied to

12

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-remote-clients/using-coherence-java-grpc-client.html#GUID-76F8E59F-3933-45CD-8C21-C13072D4D46D

the session’s underlying ConfigurableCacheFactory and used to scope Coherence services. In this
way multiple session configurations may use identical service names, which will be kept separate
using the scope. On a Coherence cluster member, each session should have a unique scope name.

type

The session type of this configuration. There are three different types of sessions that can be
configured:

• server represents storage enabled cluster member session.

• client represents a storage disabled cluster member or Coherence*Extend client session.

• grpc (deprecated) is a gRPC client session (see the gRPC documentation).

The type of the session affects how the bootstrap API starts the session.

As of Coherence Spring 4.0, the GRPC session type has been deprecated. Please use
CLIENT instead. Since Coherence 22.06.2, relevant gRPC configuration can be
configured directly in the coherence-cache-config.xml file as described in the
Coherence reference guide chapter Configuring the Coherence gRPC Client.

priority

The priority specifies the order to use, when starting the session. Sessions will be started with the
lowest priority first. If this property is not specified, the property will default to 0.

The following property applies to the CLIENT (Coherence*Extend) and Server mode, only:

configUri

The Coherence cache configuration URI for the session. As already mentioned, the most common
configuration to set will be the Coherence configuration file name. If not specified, the default value
will be coherence-cache-config.xml.

The following property applies to the deprecated GRPC mode, only:

channelName (deprecated)

Sets the underlying gRPC channel. If not set, it will default to localhost and port 1408. This property
is deprecated. See note under type.

serializer (deprecated)

Specifies the serializer to that shall be used, in order to serialize gRPC message payloads. If not
specified, the serializer will be the default Coherence serializer, either POF if it has been enabled
with the coherence.pof.enabled system property or Java serialization. This property is deprecated.
See note under type.

tracingEnabled (deprecated)

Specifies if client gRPC tracing should be enabled. This is false by default. This property is

13

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-remote-clients/using-coherence-java-grpc-client.html#GUID-76F8E59F-3933-45CD-8C21-C13072D4D46D

deprecated. See note under type.

3.6. Dependency Injection
Coherence Spring provides comprehensive support for the injection Coherence objects into your
Spring beans including: Session, NamedMap, NamedCache, ContinuousQueryCache,
ConfigurableCacheFactory, Cluster.

For the most part, you can use the equivalent Coherence Spring annotation that match the
annotations from Coherence’s CDI or Micronaut support.

3.6.1. Injecting NamedMap and NamedCache

Coherence NamedMap and NamedCache instances can be injected as beans in Spring applications. The
mechanics of injecting NamedMap or NamedCache beans is identical, so any use of NamedCache in the
examples below can be replaced with NamedMap. Other more specialized forms of NamedMap and
NamedCache can also be injected, for example the asynchronous forms of both classes and views.

In Spring one caveat exists regarding the injection of Map-based classes that directly inherit from
java.util.Map including NamedCache and NamedMap when using the @Autowired annotation. Instead of
injecting actual instances of Beans representing a java.util.Collection or java.util.Map, Spring
will inject a collection of all the beans that represent the specified bean type instead. As a work-
around, you can use the @Resource annotation, but it has its own limitations, for instance, not being
usable for constructor injection.

Example of using the @Resource annotation

 @Resource(name = COHERENCE_CACHE_BEAN_NAME)
 private NamedCache numbers; ①

 @Resource(name = COHERENCE_CACHE_BEAN_NAME)
 @Name("numbers") ②
 private NamedCache namedCache;

① If not specified, the name of the field will be used to determine the cache name

② Alternatively, you can specify the name of the cache using the @Name annotation

For more information, please see Fine-tuning Annotation-based Autowiring with
Qualifiers in the Spring Framework reference guide.

In order to provide a better user-experience around the dependency injection of maps and caches,
Coherence Spring introduces its own set of annotations. The following annotations are available:

• @CoherenceCache

• @CoherenceMap

• @CoherenceAsyncCache

• @CoherenceAsyncMap

14

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#beans-autowired-annotation-qualifiers
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#beans-autowired-annotation-qualifiers

Using these annotations, you can inject any Coherence NamedMap and NamedCache in any
situation including constructors.

Furthermore, the annotations also give you some added conveniences such as the ability to specify
the name of the cache, or the name of the Coherence session as part of the annotation. E.g., the
above example can be simplified to:

Example of using the @CoherenceCache annotation

 @CoherenceCache
 private NamedCache numbers; ①

 @CoherenceCache("numbers") ②
 private NamedCache namedCache;

① If not specified, the name of the field will be used to determine the cache name

② Alternatively, you can specify the name of the cache using the @Name annotation

All the annotations @CoherenceCache, @CoherenceMap, @CoherenceAsyncCache, and
@CoherenceAsyncMap are themselves annotated with @Lazy. This is to avoid deadlocks
where a cache bean requires another bean to be injected in its configuration,
which will happen on a different thread to the main Spring thread. A consequence
of this is that all cache beans will be Spring lazy dynamic proxies.

3.6.1.1. Type Conversion of NamedMap and NamedCache

As mentioned previously, Spring a has a special relationship with Map implementations. In order to
work around this limitation, we provide the meta-annotations @CoherenceCache, @CoherenceMap etc.
We apply a little trick using the @Value annotation and referencing the injection candidate via a SpEL
expression. This in turn, however, triggers type conversion in Spring’s DefaultListableBeanFactory,
and we must provide a no-op converter for Map-based Coherence objects using the
CoherenceGenericConverter.

Without it, you may see Spring’s MapToMapConverter being used, which in turn will call
Map#entrySet(), a potentially very expensive operation for large datasets in a Coherence cluster.

When defining your own ConversionService bean, please make sure that the
CoherenceGenericConverter is added to it.

If the BeanFactory already contains a ConfigurableConversionService, we will add the
CoherenceGenericConverter automatically using the CoherenceConversionServicePostProcessor. This
should be typically the case with Spring Boot, which provides the ApplicationConversionService. If
you provide your own ConversionService bean, we will back-off and a message to add the
CoherenceGenericConverter manually will be logged.

15

https://coherence.community/23.03/api/java/com/tangosol/net/NamedMap.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedCache.html

Manually adding the CoherenceGenericConverter

 @Bean
 public ConversionService conversionService() {
 DefaultFormattingConversionService conversionService =
 new DefaultFormattingConversionService();
 conversionService.addConverter(new CoherenceGenericConverter()); ①
 return conversionService;
 }

① Adding a new instance of the CoherenceGenericConverter

In case no ConversionService is defined in your application context, PropertyEditors are being used,
and that chain does not seem to trigger the same expensive operation, nonetheless using the
ConversionService route is advised.

3.6.1.2. Specify the Map/Cache Name

As already mentioned above, you specify the name of the map/cache using the value-property of
the annotation. Of course, the same applies when injecting a constructor or method parameter:

Example of constructor injection of a NamedMap

@Service
public class SomeService {

 public SomeService(@CoherenceMap("people") NamedMap<String, Person> map) {
 // TODO: initialize the service...
 }
}

If injecting a cache/map via the constructor, AND you do not specify a cache/map
name, then Coherence Spring will try to derive the name of the cache/map from
the parameter name. However, this only works if either the compiler flag
-parameters (Java 8+) is enabled, or if the JVM generates debugging info. For more
information see the article Method Parameter Reflection in Java.

If you prefer, you can also specify the name of the map/cache using the @Name annotation. The
example below will inject a NamedMap that uses an underlying cache named people:

Example of using the @Name annotation

@CoherenceMap
@Name("people")
private NamedMap<String, Person> map;

3.6.1.3. Specify the Owning Session Name

Whilst most applications probably use a single Coherence Session, there are uses-cases where an

16

https://www.baeldung.com/java-parameter-reflection

application may have multiple sessions. In this case, when injecting for example a NamedMap, the
specific session can be specified by annotating the injection point with either @SessionName or more
concise with the session parameter available for the following annotations:

• @CoherenceCache

• @CoherenceMap

• @CoherenceAsyncCache

• @CoherenceAsyncMap

In the previous examples where no separate Session name was specified, Coherence will use the
default session to obtain the caches/maps. Assuming that the application has multiple sessions
configured, one of which is named Catalog, the following example injects a NamedMap from an
underlying cache named products in the Catalog session.

Example of using the @SessionName annotation

@CoherenceMap
@SessionName("Catalog")
@Name("products")
private NamedMap<String, Product> map;

This can be further streamlined to:

Example of using the @CoherenceMap annotation with the session parameter

@CoherenceMap(name="products", session="Catalog")
private NamedMap<String, Product> map;

The same annotation can be used on method parameter injection points as well:

Example of using @CoherenceMap with session parameter in a constructor

@Controller
public class CatalogController {

 public CatalogController(@CoherenceMap(name="products", session="Catalog")
 NamedMap<String, Product> products) {
 // TODO: initialize the bean...
 }
}

3.6.2. Injecting AsyncNamedMap & AsyncNamedCache

It is possible to inject the asynchronous classes AsyncNamedMap and AsyncNamedCache as beans in
exactly the same way as described above. Just change the type of the injection point to be
AsyncNamedMap or AsyncNamedCache using one of the following annotations:

• @CoherenceAsyncCache

17

• @CoherenceAsyncMap

Injecting an AsyncNamedMap

@CoherenceAsyncMap("people")
private AsyncNamedMap<String, Person> map;

3.6.3. Injecting Views (CQC)

View (or ContinuousQueryCache) beans can be injected by specifying the @View annotation at the
injection point. A view is a sub-set of the data in an underlying cache, controlled by a Filter.

Injecting an AsyncNamedMap

@CoherenceMap("people")
@View ①
private NamedMap<String, Person> map;

① The injection point has been annotated with @View, so the injected NamedMap will actually be an
implementation of a ContinuousQueryCache.

In the above example, no Filter has been specified, so the default behaviour is to use an
AlwaysFilter. This means that the view will contain all the entries from the underlying cache
(typically a distributed cache). As a ContinuousQueryCache will hold keys and values locally in
deserialized form, this can often be a better approach than using a replicated cache.

3.6.3.1. Specify a View Filter

Filters are specified for views using a special filter binding annotation. These are annotations that
are themselves annotated with the meta-annotation @FilterBinding. Coherence Spring comes with
some built in implementations, for example @AlwaysFilter and @WhereFilter. It is simple to
implement custom Filters as required by applications (see the Filter Binding Annotation section for
more details).

For example, if there was a cache named "people", containing Person instances, and the application
required a view of that cache to just contain People where the "lastName" attribute is equal to
"Simpson", then the @WhereFilter filter binding annotation could be used to specify the Filter. The
@WhereFilter annotation produces a Filter created from a Coherence CohQL where-clause, in this
case lastName == 'Simpson'.

Injecting a @CoherenceMap with @WhereFilter

 @CoherenceMap("people") ①
 @View ②
 @WhereFilter("lastName = 'Simpson'") ③
 private NamedMap<String, Person> allSimpsons; ④

① The name of the underlying map for the view is "people".

② The @View annotation specifies that a view will be injected rather than a raw`NamedMap`.

18

https://coherence.community/23.03/api/java/com/tangosol/net/cache/ContinuousQueryCache.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/View.html
https://coherence.community/23.03/api/java/com/tangosol/util/Filter.html
https://coherence.community/23.03/api/java/com/tangosol/util/filter/AlwaysFilter.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/FilterBinding.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/AlwaysFilter.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/WhereFilter.html

③ The @WhereFilter annotation specifies the CohQL expression.

④ The NamedMap contains only people with the last name Simpson.

The above CohQL expression is still rather simple. Let’s further restrict the results:

@WhereFilter with a more complex CohQL expression

 @CoherenceMap("people")
 @View
 @WhereFilter("lastName = 'Simpson' and age > 10") ①
 private NamedMap<String, Person> simpsons;

① The @WhereFilter also filters on the age property.

The view injected above will be all People with a lastName attribute equal to Simpson and an age
attribute greater than 10.

The Coherence reference guide has an in-depth chapter on CohQL and more
details on the WHERE clause under Filtering Entries in a Result Set

Other built-in or custom filter binding annotations can be combined as well and multiple filter-
binding annotations can be added to the same injection point to build up more complex views. The
Filter instances produced from each filter binding annotation will all be collected together in an
AllFilter, which will logically combine them together.

3.6.3.2. Specify a View Transformer

The values in a view map do not have to be the same as the values in the underlying cache. Instead,
a ValueExtractor can be used to transform the actual cache value into a different value in the view.
ValueExtractors are specified for views using a special extractor binding annotation. These are
annotations that are themselves annotated with the meta-annotation @ExtractorBinding. The
Coherence Spring framework comes with some built in implementations, for example
@PropertyExtractor, and it is simple to implement other as required by applications (see the
Extractor Binding Annotation section for more details).

For example, if there was a cache named "people", containing Person instances, and the application
required a view where the value was just the age attribute of each Person rather than the whole
cache value. A @PropertyExtractor annotation could be used to specify that the values should be
transformed using a property extractor.

Injecting a @CoherenceMap with multiple @WhereFilter

 @CoherenceMap("people") ①
 @View ②
 @PropertyExtractor("age") ③
 private NamedMap<String, Integer> ages; ④

① The name of the underlying map for the view is "people".

② The @View annotation specifies that a view will be injected rather than a raw NamedMap.

19

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-applications/using-coherence-query-language.html#GUID-B671FDD9-386B-4719-BFC6-DCFF32C360BA
https://coherence.community/23.03/api/java/com/tangosol/util/filter/AllFilter.html

③ The @PropertyExtractor annotation specifies that a ValueExtractor should be used to transform
the underlying cache values into different values in the view. In this case the @PropertyExtractor
annotation will produce a value extractor to extract the age property.

④ Note that the map injected is now a NamedMap<String, Integer> with generic types of String and
Integer because the values have been transformed from Person to Integer.

Multiple extractor bindings can be applied to the injection point, in which case the view value will
be a List of the extracted attributes.

3.6.4. Injecting a Session

Sometimes it might not be possible to inject a Coherence resource, such as NamedMap or NamedCache
directly because the name of the resource to be injected is not known until runtime. In this case it
makes sense to inject a Session instance which can then be used to obtain other resources.

The simplest way to inject a Session is to annotate a field, method parameter, or other injection
point with your preferred Spring-supported injection annotation such as @Autowired or @Inject:

Injecting a Coherence Session instance

@RestController
public class MyBean {
 @Inject ①
 private Session session;

① Other injection annotations such as @Autowired can be used as well

Injecting a Coherence Session using constructor injection

@RestController
public class MyBean {
 @Autowired ①
 public MyBean(Session session) {
 // TODO...
 }
}

① If your class has only a single constructor, you can even omit the @Autowired annotation

Both examples above will inject the default Session instance into the injection point.

3.6.4.1. Specify a Session Name

For most applications that only use a single Session the simple examples above will be all that is
required. Some applications though may use multiple named Session instances, in which case the
Session name need to be specified. This can be done by adding the @Name annotation to the
injection point.

20

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Name.html

Injecting a specific (named) Coherence Session

@RestController
public class MyBean {
 @Autowired ①
 @Name("Catalog")
 private Session session;
}

① Other injection annotations such as @Inject can be used as well

or into a constructor:

Injecting a specific (named) Coherence Session via constructor

@RestController
public class MyBean {
 @Autowired ①
 public MyBean(@Name("Catalog") Session session) {
 // TODO...
 }
}

① If your class has only a single constructor, you can even omit the @Autowired annotation

3.6.5. Injecting NamedTopic

Coherence NamedTopic instances can be injected as beans in Spring applications.

An alternative way to write message driven applications instead of directly injecting NamedTopic,
Publisher or Subscriber beans is to use Messaging with Coherence Topics.

3.6.5.1. Injecting NamedTopic

The simplest way to inject a NamedTopic is to just annotate the injection point with
@javax.inject.Inject.

Inject NamedTopic

@Inject
private NamedTopic<Person> people;

In this example the injection point field name is used to determine the topic name to inject, so a
NamedTopic bean with an underlying topic name of people will be injected.

As an alternative to using a NamedTopic directly in code, Coherence Spring also supports annotating
methods directly as publishers and subscribers. See the Messaging with Coherence Topics section of
the documentation.

21

https://coherence.community/23.03/api/java/com/tangosol/net/topic/NamedTopic.html

Specify the Topic Name

Sometimes the name of the topic being injected needs to be different to the injection point name.
This is always the case when injecting into method parameters as the parameter names are lost by
the time the injection point is processed. In this case we can use the @Name annotation to specify
the underlying cache name.

The example below will inject a NamedTopic that uses an underlying topic named orders.

Use @Name to specify topic name

@Inject
@Name("people")
private NamedTopic<Order> orders;

The same applies when injecting a constructor or method parameter:

Use @Name to specify topic name on a parameter

@Singleton
public class SomeBean {
 @Inject
 public SomeBean(@Name("orders") NamedTopic<Order> topic) {
 // ToDo:
 }
}

Specify the Session Name

Whilst most applications probably use a single Coherence Session there are uses-cases where an
application may have multiple sessions. In this case, when injecting a NamedTopic the specific session
can be specified by annotating the injection point with @SessionName.

In the previous examples where no @SessionName was specified Coherence will use the default
session to obtain the caches.

For example, assume the application has multiple sessions configured, one of which is named
Customers. The following code snippet injects a NamedTopic using an underlying topic named orders
in the Customers session.

Use @SessionName to specify session

@Inject
@SessionName("Customers")
@Name("orders")
private NamedTopic<Order> topic;

Again, the same annotation can be used on method parameter injection points.

22

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Name.html
https://coherence.community/23.03/api/java/com/tangosol/net/Session.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/SessionName.html

Use @SessionName to specify session on a method parameter

@Controller
public class OrderProcessor {
 @Inject
 public OrderProcessor(@SessionName("Customers") @Name("orders")
 NamedTopic<Order> orders) {
 // ToDo:
 }
}

3.6.5.2. Injecting a NamedTopic Publisher

If application code only needs to publish messages to a Coherence NamedTopic then instead of
injecting a NamedTopic bean, a Publisher bean can be injected.

The simplest way to inject a Publisher is just to annotate the injection point of type Publisher with
@Inject, for example:

Inject a Publisher

@Inject
private Publisher<Order> orders;

The example above will inject a Publisher bean, the name of the underlying NamedTopic will be
taken from the name of the injection point, in this case orders.

Specify the Topic Name

If the name of the injection point cannot be used as the NamedTopic name, which is always the case
with injection points that are method or constructor parameters, then the @Name annotation can
be used to specify the topic name.

For example, both of the code snippets below inject a Publisher that published to the orders topic:

Inject a Publisher that publishes on the orders topic

@Inject
@Name("orders")
private Publisher<Order> orders;

23

https://coherence.community/23.03/api/java/com/tangosol/net/topic/Publisher.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Name.html

Inject a Publisher that publishes on the orders topic

@Controller
public class OrderController {
 @Inject
 public OrderController(@Name("orders") Publisher<Order> topic) {
 // ToDo:
 }
}

Specify the Owning Session

As with injection of NamedTopics, in applications using multiple Session instances, the name of the
Session that owns the underlying NamedTopic can be specified when injecting a Publisher by adding
the @SessionName annotation.

Inject a Publisher while specifying the owning session

@Inject
@Name("orders")
@SessionName("Customers")
private Publisher<Order> orders;

3.6.5.3. Injecting a NamedTopic Subscriber

If application code only needs to subscribe to messages from a Coherence NamedTopic then instead
of injecting a NamedTopic bean, a Subscriber bean can be injected.

The simplest way to inject a Subscriber is just to annotate the injection point of type Subscriber with
@Inject, for example:

Inject Subscriber

@Inject
private Subscriber<Order> orders;

The example above will inject a Subscriber bean, the name of the underlying NamedTopic will be
taken from the name of the injection point, in this case orders.

Specify the Topic Name

If the name of the injection point cannot be used as the NamedTopic name, which is always the case
with injection points that are method or constructor parameters, then the @Name annotation can
be used to specify the topic name.

For example, both of the code snippets below inject a Subscriber that subscribe to the orders topic:

24

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/SessionName.html
https://coherence.community/23.03/api/java/com/tangosol/net/topic/Subscriber.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Name.html

Inject subscriber into field

@Inject
@Name("orders")
private Subscriber<Order> orders;

Inject subscriber into method parameter

@Controller
public class OrderController {
 @Inject
 public OrderController(@Name("orders") Subscriber<Order> topic) {
 // ToDo:
 }
}

Specify the Owning Session

As with injection of NamedTopics, in applications using multiple Session instances, the name of the
Session that owns the underlying NamedTopic can be specified when injecting a Subscriber by adding
the @SessionName annotation.

@Inject
@Name("orders")
@SessionName("Customers")
private Subscriber<Order> orders;

3.7. Events
Event driven patterns are a common way to build scalable applications and microservices.
Coherence produces a number of events that can be used by applications to respond to data
changes and other actions in Coherence.

There are two types of events in Coherence:

• MapEvents which are subscribed to using a MapListener

• Events, which are subscribed to using an EventInterceptor

Spring makes subscribing to both of these event-types much simpler using observer methods
annotated with @CoherenceEventListener.

Example of using a Coherence Event Listener

@CoherenceEventListener
void onEvent(CoherenceLifecycleEvent event) {
 // TODO: process event...
}

25

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/SessionName.html
https://coherence.community/23.03/api/java/com/tangosol/util/MapEvent.html
https://coherence.community/23.03/api/java/com/tangosol/util/MapListener.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/Event.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/EventInterceptor.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html

The method above receives all events of type CoherenceLifecycleEvent emitted during the lifetime of
the application. The actual events received can be controlled further by annotating the method or
the method arguments.

Spring 4.2 introduced Annotation-driven event listeners as part of its event
support.

Coherence Spring does NOT directly use Spring’s ApplicationEvent class and the corresponding
ApplicationListener interface. However, Coherence Spring follows that pattern conceptually in
order to provide a similar user experience.

By default, the handling of Coherence events is asynchronous. Use the @Synchronous
annotation to make the event handler execution synchronous.

Example of making a Coherence Event Listener synchronous

@CoherenceEventListener
@Synchronous
void onEvent(CoherenceLifecycleEvent event) {
 // TODO: process event...
}

3.7.1. MapEvent Listeners

Listening for changes to data in Coherence is a common use case in applications. Typically, this
involves creating an implementation of a MapListener and adding that listener to a NamedMap or
NamedCache. Using Coherence Spring makes this much simpler by just using Spring beans with
suitably annotated observer methods that will receive the respective events.

3.7.1.1. MapEvent Observer Methods

A MapEvent observer method is a method on a Spring bean that is annotated with
@CoherenceEventListener. The annotated method must have a void return type and must take a
single method parameter of type MapEvent, typically this has the generic types of the underlying
map/cache key and value.

For example, assuming that there is a map/cache named people, with keys of type String and values
of type Plant, and the application has logic that should be executed each time a new Plant is
inserted into the map:

26

https://spring.io/blog/2015/02/11/better-application-events-in-spring-framework-4-2
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#context-functionality-events
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#context-functionality-events
https://coherence.community/23.03/api/java/com/tangosol/util/MapListener.html
https://coherence.community/23.03/api/java/com/tangosol/util/MapEvent.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html

Example of listening to Inserted events

import com.oracle.coherence.spring.annotation.event.Inserted;
import com.oracle.coherence.spring.annotation.event.MapName;
import com.oracle.coherence.spring.event.CoherenceEventListener;
import com.tangosol.util.MapEvent;
import org.springframework.stereotype.Component;

@Component ①
public class PersonEventHandler {

 @CoherenceEventListener ②
 public void onNewPerson(@MapName("people") ③
 @Inserted ④
 MapEvent<String, Person> event) {
 // TODO: process the event
 }
}

① The PersonController is a simple Spring bean, in this case a Controller.

② The onNewPerson method is annotated with @CoherenceEventListener making it a Coherence event
listener.

③ The @MapName("people") annotation specifies the name of the map to receive events from, in this
case people.

④ The @Inserted annotation specified that only Inserted events should be sent to this method.

The above example is still rather simple. There are a number of other annotations that provide
much finer-grained control over what events are received from where.

Specify the Map/Cache name

By default, a MapEvent observer method would receive events for all maps/caches. In practice
though, this would not be a very common use case, and typically you would want an observer
method to listen to events that are for specific caches. The Coherence Spring API contains two
annotations for specifying the map name:

• @MapName

• @CacheName

Both annotations take a single String value that represents the name of the map or cache that
events should be received from.

Listening to events for all caches

 @CoherenceEventListener
 public void onEvent(MapEvent<String, String> event) {
 // TODO: process the event
 }

27

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/MapName.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/CacheName.html

The above method receives events for all caches.

Listening to events for the map named "foo"

 @CoherenceEventListener
 public void onFooEvent(@MapName("foo") ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

① The above method receives events for the map named foo.

Listening to events for the cache named "bar"

 @CoherenceEventListener
 public void onBarEvent(@CacheName("bar") ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

① The above method receives events for the cache named bar.

Specify the Cache Service name

In the previous section we showed to restrict received events to a specific map or cache name.
Events can also be restricted to only events from a specific cache service. In Coherence all caches
are owned by a cache service, which has a unique name. By default, a MapEvent observer method
would receive events for a matching cache name on all services. If an applications Coherence
configuration has multiple services, the events can be restricted to just specific services using the
@ServiceName annotation.

Listening to events for the "foo" map on all services

 @CoherenceEventListener
 public void onEventFromAllServices(@MapName("foo") ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

① The above method receives events for the map named foo on all cache services.

Listening to events for the "foo" map on the "Storage" service only

 @CoherenceEventListener
 public void onEventOnStorageService(@MapName("foo")
 @ServiceName("Storage") ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

28

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-applications/introduction-coherence-clusters.html#GUID-62A54E60-E964-4DFE-BE7F-CA7ADA93354E
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/ServiceName.html

① The above method receives events for the map named foo owned by the cache service named
Storage.

Listening to events for ALL caches on the "Storage" service

 @CoherenceEventListener
 public void onEventFromAllCachesOnStorageService(@ServiceName("Storage") ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

① The above method receives events for all caches owned by the cache service named Storage as
there is no @MapName or @CacheName annotation.

Specify the Owning Session Name

In applications that use multiple Sessions, there may be a situation where more than one session
has a map with the same name. In those cases an observer method may need to restrict the events
it receives to a specific session. The events can be restricted to maps and/or caches in specific
sessions using the @SessionName annotation.

Listening to events for the "orders" map in ALL sessions

 @CoherenceEventListener
 public void onOrdersEventAllSessions(@MapName("orders") ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

① The above method receives events for the map named orders in all sessions.

Listening to events for the "orders" map in the "Customer" session only

 @CoherenceEventListener
 public void onOrdersEventInCustomerSession(@MapName("orders")
 @SessionName("Customer") ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

① The above method receives events for the map named orders owned by the Session named
Customer.

Listening to events for ALL caches in the "Customer" session

 @CoherenceEventListener
 public void onEventInAllCachesInCustomerSession(@SessionName("Customer") ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

29

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/SessionName.html

① The above method receives events for the all caches owned by the Session named Customer as
there is no @MapName or @CacheName annotation.

Therefore, in application with multiple sessions, events with the same name can be routed by
session.

Route events with the cache name by the name of the session

 @CoherenceEventListener
 public void onCustomerOrders(@SessionName("Customer") ①
 @MapName("orders")
 MapEvent<String, Order> event) {
 // TODO: process the event
 }

 @CoherenceEventListener
 public void onCatalogOrders(@SessionName("Catalog") ②
 @MapName("orders")
 MapEvent<String, Order> event) {
 // TODO: process the event
 }

① The onCustomerOrders method will receive events for the orders map owned by the Session
named Customer.

② The onCatalogOrders method will receive events for the orders map owned by the Session named
Catalog.

3.7.1.2. Receive Specific Event Types

There are three types of event that a MapEvent observer method can receive:

• Insert

• Update

• Delete

By default, an observer method will receive all events for the map (or maps) it applies to. This can
be controlled using the following annotations:

• @Inserted - to receive Insert events.

• @Updated - to receive Update events.

• @Deleted - to receive Delete events.

Zero or more of the above annotations can be used to annotate the MapEvent parameter of the
observer method.

30

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Inserted.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Updated.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Deleted.html

Listen to "Insert" event for the "test" map only

 @CoherenceEventListener
 public void onInsertEvent(@MapName("test")
 @Inserted ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

① Only Insert events for the map test will be received.

Listen to "Insert" and "Delete" events for the "test" map only

 @CoherenceEventListener
 public void onInsertAndDeleteEvent(@MapName("test")
 @Inserted @Deleted ①
 MapEvent<String, String> event) {
 // TODO: process the event
 }

① Only Insert and Delete events for the map test will be received.

Listen to ALL map events for the "test" map

 @CoherenceEventListener
 public void onMapEvent(@MapName("test") MapEvent<String, String> event) {
 // TODO: process the event
 }

All events for the map test will be received.

3.7.1.3. Filtering Events

The MapEvents received by an observer method can be further restricted by applying a filter. Filters
are applied by annotating the method with a filter binding annotation, which is a link to a factory
that creates a specific instance of a Filter. Event filters applied in this way are executed on the
server, which can make receiving events more efficient for clients, as the event will not be sent
from the server at all.

Coherence Spring comes with some built in implementations, for example:

• @AlwaysFilter,

• @WhereFilter,

It is simple to implement custom filters as required by applications. Please refer to the Filter
Binding Annotation section for more details.

For example, let’s assume there is a map named people with keys of type String and values of type
People, and an observer method needs to receive events for all values where the age property is 18
or over. A custom filter binding annotation could be written to create the required Filter.

31

https://coherence.community/23.03/api/java/com/tangosol/util/Filter.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/AlwaysFilter.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/WhereFilter.html

However, as the condition is very simple, the built-in @WhereFilter filter binding annotation will be
used in this example with a where-clause of age >= 18.

Example of a Where Filter

 @WhereFilter("age >= 18") ①
 @CoherenceEventListener
 @MapName("people")
 public void onAdult(MapEvent<String, Person> people) {
 // TODO: process event...
 }

① The @WhereFilter annotation is applied to the method.

The onAdult method above will receive all events emitted from the people map, but only for entries
where the value of the age property of the entry value is >= 18.

3.7.1.4. Transforming Events

In some use-cases the MapEvent observer method does not require the whole map or cache value to
process, it might only require one, or a few, properties of the value, or it might require some
calculated value. This can be achieved by using an event transformer to convert the values that will
be received by the observer method. The transformation takes place on the server before the event
is emitted to the method. This can improve efficiency on a client in cases where the cache value is
large, but the client only requires a small part of that value because only the required values are
sent over the wire to the client.

In Coherence Spring, event values are transformed using a ValueExtractor. A ValueExtractor is a
simple interface that takes in one value and transforms it into another value. The ValueExtractor is
applied to the event value. As events contain both a new and old values, the extractor is applied to
both as applicable. For Insert events there is only a new value, for Update events there will be both,
a new and an old value, and for Delete events, there will only be an old value. The extractor is not
applied to the event key.

The ValueExtractor to use for a MapEvent observer method is indicated by annotating the method
with an extractor binding annotation. An extractor binding is an annotation that is itself annotated
with the meta-annotation @ExtractorBinding. The extractor binding annotation is a link to a
corresponding ExtractorFactory that will build an instance of a ValueExtractor.

For example, assuming that there is a NamedMap with the name orders that has keys of type String
and values of type Order. The Order class has a customerId property of type String. A MapEvent
observer method is only interested in the customerId for an order, so the built-in extractor binding
annotation @PropertyExtractor can be used to just extract the customerId from the event:

32

https://coherence.community/23.03/api/java/com/tangosol/util/ValueExtractor.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/ExtractorBinding.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/ExtractorFactory.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/PropertyExtractor.html

Example of a Property Extractor

 @CoherenceEventListener
 @PropertyExtractor("customerId") ①
 public void onOrder(@MapName("orders") ②
 MapEvent<String, String> event) { ③
 // TODO: process event...
 }

① The method is annotated with @PropertyExtractor to indicate that a ValueExtractor that just
extracts the customerId property should be used to transform the event.

② The map name to receive events from is set to orders

③ Note that the generic types of the MapEvent parameter are now MapEvent<String, String> instead
of MapEvent<String, Order> because the event values will have been transformed from an Order
into just the String customerId.

It is possible to apply multiple filter binding annotations to a method. In this case the extractors are
combined into a Coherence ChainedExtractor, which will return the extracted values as a
java.util.List.

Expanding on the example above, if the Order class also has an orderId property of type Long, and an
observer method, only interested in Insert events needs both the customerId and orderId, then the
method can be annotated with a two @PropertyExtractor annotations:

Example of using multiple Property Extractors

 @CoherenceEventListener
 @PropertyExtractor("customerId") ①
 @PropertyExtractor("orderId")
 public void onOrderWithMultiplePropertyExtractors(
 @Inserted ②
 @MapName("orders")
 MapEvent<String, List<Object>> event) { ③
 List list = event.getNewValue();
 String customerId = (String) list.get(0); ④
 Long orderId = (Long) list.get(1);
 // ...
 }

① The method is annotated with two @PropertyExtractor annotations, one to extract customerId and
one to extract orderId.

② The method parameter is annotated with @Inserted so that the method only receives Insert
events.

③ The MapEvent parameter not has a key of type String and a value of type List<Object>, because
the values from the multiple extractors will be returned in a List. We cannot use a generic value
narrower than Object for the list because it will contain a String and a Long.

④ The extracted values can be obtained from the list, they will be in the same order that the
annotations were applied to the method.

33

https://coherence.community/23.03/api/java/com/tangosol/util/extractor/ChainedExtractor.html

3.7.2. Coherence Event Interceptors

Coherence produces many events in response to various server-side and client-side actions. For
example, Lifecycle events for Coherence itself, maps and cache, Entry events when data in maps and
caches changes, Partition events for partition lifecycle and distribution, EntryProcessor events when
invoked on a map or cache, etc. In a stand-alone Coherence application these events are subscribed
to using a EventInterceptor implementation registered to listen to specific event types.

The Coherence Spring API makes subscribing to these events simple, by using the same approach
used for Spring Application events, namely annotated event observer methods. A Coherence event
observer method is a method annotated with @CoherenceEventListener that has a void return type,
and a single parameter of the type of event to be received. The exact events received can be further
controlled by applying other annotations to the method or event parameter. The annotations
applied will vary depending on the type of the event.

3.7.2.1. Event Types

The different types of event that can be observed are listed below:

• CoherenceLifecycleEvent - lifecycle events for Coherence instances

• SessionLifecycleEvent - lifecycle events for Session instances

• LifecycleEvent - lifecycle events for ConfigurableCacheFactory instances

• CacheLifecycleEvent - lifecycle events for NamedMap and NamedCache instances

• EntryEvent - events emitted by the mutation of entries in a NamedMap or NamedCache

• EntryProcessorEvent - events emitted by the invocation of an EntryProcessor on entries in a
NamedMap or NamedCache

• TransactionEvent - events pertaining to all mutations performed within the context of a single
request in a partition of a NamedMap or NamedCache, also referred to as "partition level
transactions".

• TransferEvent - captures information concerning the transfer of a partition for a storage
enabled member.

• UnsolicitedCommitEvent - captures changes pertaining to all observed mutations performed
against caches that were not directly caused (solicited) by the partitioned service. These events
may be due to changes made internally by the backing map, such as eviction, or referrers of the
backing map causing changes.

• If using commercial versions of Coherence with Coherence Spring, there are also events
associated to the federation of data between different clusters.

Most of the events above only apply to storage enabled cluster members. For example, an
EntryEvent will only be emitted for mutations of an entry on the storage enabled cluster member
that owns that entry. Lifecycle events on the other hand, may be emitted on all members, such as
CacheLifecycle event that may be emitted on any member when a cache is created, truncated, or
destroyed.

34

https://coherence.community/23.03/api/java/com/tangosol/net/events/EventInterceptor.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/CoherenceLifecycleEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/Coherence.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/SessionLifecycleEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/Session.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/application/LifecycleEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/ConfigurableCacheFactory.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/cache/CacheLifecycleEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedMap.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedCache.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/cache/EntryEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedMap.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedCache.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/cache/EntryProcessorEvent.html
https://coherence.community/23.03/api/java/com/tangosol/util/InvocableMap.EntryProcessor.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedMap.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedCache.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransactionEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedMap.html
https://coherence.community/23.03/api/java/com/tangosol/net/NamedCache.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/UnsolicitedCommitEvent.html

3.7.2.2. Coherence Lifecycle Events

LifecycleEvent are emitted to indicate the lifecycle of a ConfigurableCacheFactory instance.

To subscribe to LifecycleEvent simply create a Spring bean with a listener method that is annotated
with @CoherenceEventListener. The method should have a single parameter of type LifecycleEvent.

LifecycleEvent are emitted by ConfigurableCacheFactory instances and will only be received in the
same JVM, which could be a cluster member or a client.

For example, the onEvent method below will receive lifecycle events for all ConfigurableCacheFactory
instances in the current application:

@CoherenceEventListener
public void onEvent(LifecycleEvent event) {
 // TODO: process the event
}

Receive Specific LifecycleEvent Types

There are four different types of LifecycleEvent. By adding the corresponding annotation to the
method parameter the method will only receive the specified events.

• Activating - a ConfigurableCacheFactory instance is about to be activated, use the @Activating
annotation

• Activated - a ConfigurableCacheFactory instance has been activated, use the @Activated
annotation

• Disposing - a ConfigurableCacheFactory instance is about to be disposed, use the @Disposing
annotation

For example, the method below will only receive Activated and Disposing events.

@CoherenceEventListener
public void onEvent(@Activated @Disposing LifecycleEvent event) {
 // TODO: process the event
}

Receive CoherenceLifecycleEvents for a Specific Coherence Instance

Each Coherence instance in an application has a unique name. The observer method can be
annotated to only receive events associated with a specific Coherence instance by using the @Name
annotation.

For example, the method below will only receive events for the Coherence instance named
customers:

35

https://coherence.community/23.03/api/java/com/tangosol/net/events/application/LifecycleEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/ConfigurableCacheFactory.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Activating.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Activated.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Disposing.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Name.html

@CoherenceEventListener
public void onEvent(@Name("customers") CoherenceLifecycleEvent event) {
 // TODO: process the event
}

The method in this example will receive events for the default Coherence instance:

@CoherenceEventListener
public void onEvent(@Name(Coherence.DEFAULT_NAME) CoherenceLifecycleEvent event) {
 // TODO: process the event
}

3.7.2.3. Session Lifecycle Events

SessionLifecycleEvents are emitted to indicate the lifecycle event of a Session instance.

To subscribe to SessionLifecycleEvents simply create a Spring bean with a listener method
annotated with @CoherenceEventListener. The method should have a single parameter of type
SessionLifecycleEvent.

SessionLifecycleEvents are emitted by Session instances and will only be received in the same JVM,
which could be a cluster member or a client.

For example, the onEvent method below will receive lifecycle events for all Session instances in the
current application:

@CoherenceEventListener
public void onEvent(SessionLifecycleEvent event) {
 // TODO: process the event
}

Receive Specific SessionLifecycleEvent Types

There are four different types of SessionLifecycleEvent. By adding the corresponding annotation to
the method parameter the method will only receive the specified events.

• Starting - a Coherence instance is about to start, use the @Starting annotation

• Started - a Coherence instance has started, use the @Started annotation

• Stopping - a Coherence instance is about to stop, use the @Stopping annotation

• Stopped - a Coherence instance has stopped, use the @Stopped annotation

For example, the method below will only receive Started and Stopped events.

36

https://coherence.community/23.03/api/java/com/tangosol/net/events/SessionLifecycleEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/Session.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Starting.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Started.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Stopping.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Stopped.html

@CoherenceEventListener
public void onEvent(@Started @Stopped SessionLifecycleEvent event) {
 // TODO: process the event
}

Receive SessionLifecycleEvents for a Specific Session Instance

Each Session instance in an application has a name. The observer method can be annotated to only
receive events associated with a specific Session instance by using the @Name annotation.

For example, the method below will only receive events for the Session instance named customers:

@CoherenceEventListener
public void onEvent(@Name("customers") SessionLifecycleEvent event) {
 // TODO: process the event
}

The method in this example will receive events for the default Coherence instance:

@CoherenceEventListener
public void onEvent(@Name(Coherence.DEFAULT_NAME) SessionLifecycleEvent event) {
 // TODO: process the event
}

3.7.2.4. ConfigurableCacheFactory Lifecycle Events

CoherenceLifecycleEvents are emitted to indicate the lifecycle of a Coherence instance.

To subscribe to CoherenceLifecycleEvent simply create a Spring bean with a listener method
annotated with @CoherenceEventListener. The method should have a single parameter of type
CoherenceLifecycleEvent.

CoherenceLifecycleEvent are emitted by Coherence instances and will only be received in the same
JVM, which could be a cluster member or a client.

For example, the onEvent method below will receive lifecycle events for all Coherence instances in
the current application:

@CoherenceEventListener
public void onEvent(CoherenceLifecycleEvent event) {
 // TODO: process the event
}

Receive Specific CoherenceLifecycleEvent Types

There are four different types of CoherenceLifecycleEvent. By adding the corresponding annotation

37

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Name.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/CoherenceLifecycleEvent.html
https://coherence.community/23.03/api/java/com/tangosol/net/Coherence.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html

to the method parameter the method will only receive the specified events.

• Starting - a Coherence instance is about to start, use the @Starting annotation

• Started - a Coherence instance has started, use the @Started annotation

• Stopping - a Coherence instance is about to stop, use the @Stopping annotation

• Stopped - a Coherence instance has stopped, use the @Stopped annotation

For example, the method below will only receive Started and Stopped events.

@CoherenceEventListener
public void onEvent(@Started @Stopped CoherenceLifecycleEvent event) {
 // TODO: process the event
}

Receive CoherenceLifecycleEvents for a Specific Coherence Instance

Each Coherence instance in an application has a unique name. The observer method can be
annotated to only receive events associated with a specific Coherence instance by using the @Name
annotation.

For example, the method below will only receive events for the Coherence instance named
customers:

@CoherenceEventListener
public void onEvent(@Name("customers") CoherenceLifecycleEvent event) {
 // TODO: process the event
}

The method in this example will receive events for the default Coherence instance:

@CoherenceEventListener
public void onEvent(@Name(Coherence.DEFAULT_NAME) CoherenceLifecycleEvent event) {
 // TODO: process the event
}

3.7.2.5. Cache Lifecycle Events

CacheLifecycleEvent are emitted to indicate the lifecycle of a cache instance.

To subscribe to CacheLifecycleEvent simply create a Spring bean with a listener method annotated
with @CoherenceEventListener. The method should have a single parameter of type
CacheLifecycleEvent.

For example, the onEvent method below will receive lifecycle events for all caches.

38

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Starting.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Started.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Stopping.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Stopped.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Name.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/cache/CacheLifecycleEvent.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html

@CoherenceEventListener
public void onEvent(CacheLifecycleEvent event) {
 // TODO: process the event
}

Receive Specific CacheLifecycleEvent Types

There are three types of `CacheLifecycleEvent:

• Created - a cache instance has been created, use the @Created annotation

• Truncated - a cache instance has been truncated (all data was removed), use the @Truncated
annotation

• Destroyed - a cache has been destroyed (destroy is a cluster wide operation, so the cache is
destroyed on all members of the cluster and clients) use the @Destroyed annotation

For example, the method below will only receive Created and Destroyed events for all caches.

@CoherenceEventListener
public void onEvent(@Created @Destroyed CacheLifecycleEvent event) {
 // TODO: process the event
}

Receive CacheLifecycleEvents for a Specific NamedMap or NamedCache

To only receive events for a specific NamedMap annotate the method parameter with the @MapName
annotation. To only receive events for a specific NamedCache annotate the method parameter with
the @CacheName annotation.

The @MapName and @CacheName annotations are actually interchangeable so use whichever reads
better for your application code, i.e. if your code is dealing with NamedMap used @MapName. At the
storage level, where the events are generated a NamedMap and NamedCache are the same.

The method below will only receive events for the map named orders:

@CoherenceEventListener
public void onEvent(@MapName("orders") CacheLifecycleEvent event) {
 // TODO: process the event
}

Receive CacheLifecycleEvents from a Specific Cache Service

Caches are owned by a Cache Service, it is possible to restrict events received by a method to only
those related to caches owned by a specific service by annotating the method parameter with the
@ServiceName annotation.

The method below will only receive events for the caches owned by the service named
StorageService:

39

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Created.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Truncated.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Destroyed.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/MapName.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/CacheName.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/ServiceName.html

@CoherenceEventListener
public void onEvent(@ServiceName("StorageService") CacheLifecycleEvent event) {
 // TODO: process the event
}

Receive CacheLifecycleEvents from a Specific Session

A typical use case is to obtain NamedCache and NamedMap instances from a Session. It is possible to
restrict events received by a method to only those related to caches owned by a specific Session by
annotating the method parameter with the @SessionName annotation.

The method below will only receive events for the caches owned by the Session named BackEnd:

@CoherenceEventListener
public void onEvent(@SessionName("BackEnd") CacheLifecycleEvent event) {
 // TODO: process the event
}

3.7.2.6. Entry Events

An EntryEvent is emitted when a EntryProcessor is invoked on a cache. These events are only
emitted on the storage enabled member that is the primary owner of the entry that the
EntryProcessor is invoked on.

To subscribe to EntryProcessorEvent simply create a Spring bean with a listener method annotated
with @CoherenceEventListener. The method should have a single parameter of type EntryEvent.

For example, the onEvent method below will receive entry events for all caches.

@CoherenceEventListener
public void onEvent(EntryEvent event) {
 // TODO: process the event
}

Receive Specific EntryEvent Types

There are a number of different EntryEvent types.

• Inserting - an entry is being inserted into a cache, use the @Inserting annotation

• Inserted - an entry has been inserted into a cache, use the @Inserted annotation

• Updating - an entry is being updated in a cache, use the @Updating annotation

• Updated - an entry has been updated in a cache, use the @Updated annotation

• Removing - an entry is being deleted from a cache, use the @Removing annotation

• Removed - an entry has been deleted from a cache, use the @Removed annotation

40

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/SessionName.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/cache/EntryEvent.html
https://coherence.community/23.03/api/java/com/tangosol/util/InvocableMap.EntryProcessor.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Inserting.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Inserted.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Updating.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Updated.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Removing.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Removed.html

To restrict the EntryEvent types received by a method apply one or more of the annotations above to
the method parameter. For example, the method below will receive Inserted and Removed events.

@CoherenceEventListener
public void onEvent(@Inserted @Removed EntryEvent event) {
 // TODO: process the event
}

The event types fall into two categories, pre-events (those named *ing) and post-
events, those named *ed). Pre-events are emitted synchronously before the entry is
mutated. Post-events are emitted asynchronously after the entry has been
mutated.

As pre-events are synchronous the listener method should not take a long time to
execute as it is blocking the cache mutation and could obviously be a performance
impact. It is also important that developers understand Coherence reentrancy as
the pre-events are executing on the Cache Service thread so cannot call into caches
owned by the same service.

Receive EntryProcessorEvents for a Specific NamedMap or NamedCache

To only receive events for a specific NamedMap annotate the method parameter with the @MapName
annotation. To only receive events for a specific NamedCache annotate the method parameter with
the @CacheName annotation.

The @MapName and @CacheName annotations are actually interchangeable so use whichever reads
better for your application code, i.e. if your code is dealing with NamedMap used @MapName. At the
storage level, where the events are generated a NamedMap and NamedCache are the same.

The method below will only receive events for the map named orders:

@CoherenceEventListener
public void onEvent(@MapName("orders") EntryProcessorEvent event) {
 // TODO: process the event
}

Receive EntryProcessorEvents from a Specific Cache Service

Caches are owned by a Cache Service, it is possible to restrict events received by a method to only
those related to caches owned by a specific service by annotating the method parameter with the
@ServiceName annotation.

The method below will only receive events for the caches owned by the service named
StorageService:

41

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/MapName.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/CacheName.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/ServiceName.html

@CoherenceEventListener
public void onEvent(@ServiceName("StorageService") EntryProcessorEvents event) {
 // TODO: process the event
}

Receive EntryProcessorEvents from a Specific Session

A typical use case is to obtain NamedCache and NamedMap instances from a Session. It is possible to
restrict events received by a method to only those related to caches owned by a specific Session by
annotating the method parameter with the @SessionName annotation.

The method below will only receive events for the caches owned by the Session named BackEnd:

@CoherenceEventListener
public void onEvent(@SessionName("BackEnd") EntryProcessorEvents event) {
 // TODO: process the event
}

3.7.2.7. EntryProcessor Events

An EntryProcessorEvent is emitted when a mutation occurs on an entry in a cache. These events
are only emitted on the storage enabled member that is the primary owner of the entry.

To subscribe to EntryProcessorEvent simply create a Spring bean with a listener method annotated
with @CoherenceEventListener. The method should have a single parameter of type
EntryProcessorEvent.

For example, the onEvent method below will receive entry events for all caches.

@CoherenceEventListener
public void onEvent(EntryProcessorEvent event) {
 // TODO: process the event
}

Receive Specific EntryProcessorEvent Types

There are a number of different EntryProcessorEvent types.

• Executing - an EntryProcessor is being invoked on a cache, use the @Executing annotation

• Executed - an EntryProcessor has been invoked on a cache, use the @Executed annotation

To restrict the EntryProcessorEvent types received by a method apply one or more of the
annotations above to the method parameter. For example, the method below will receive Executed
events.

42

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/SessionName.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/cache/EntryProcessorEvent.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Executing.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Executed.html

@CoherenceEventListener
public void onEvent(@Executed EntryProcessorEvent event) {
 // TODO: process the event
}

The event types fall into two categories, pre-event ('Executing') and post-event
(Executed). Pre-events are emitted synchronously before the EntryProcessor is
invoked. Post-events are emitted asynchronously after the EntryProcessor has been
invoked.

As pre-events are synchronous the listener method should not take a long time to
execute as it is blocking the EntryProcessor invocation and could obviously be a
performance impact. It is also important that developers understand Coherence
reentrancy as the pre-events are executing on the Cache Service thread so cannot
call into caches owned by the same service.

Receive EntryProcessorEvents for a Specific NamedMap or NamedCache

To only receive events for a specific NamedMap annotate the method parameter with the @MapName
annotation. To only receive events for a specific NamedCache annotate the method parameter with
the @CacheName annotation.

The @MapName and @CacheName annotations are actually interchangeable so use whichever reads
better for your application code, i.e. if your code is dealing with NamedMap used @MapName. At the
storage level, where the events are generated a NamedMap and NamedCache are the same.

The method below will only receive events for the map named orders:

@CoherenceEventListener
public void onEvent(@MapName("orders") EntryProcessorEvent event) {
 // TODO: process the event
}

Receive EntryProcessorEvents from a Specific Cache Service

Caches are owned by a Cache Service, it is possible to restrict events received by a method to only
those related to caches owned by a specific service by annotating the method parameter with the
@ServiceName annotation.

The method below will only receive events for the caches owned by the service named
StorageService:

@CoherenceEventListener
public void onEvent(@ServiceName("StorageService") EntryProcessorEvents event) {
 // TODO: process the event
}

43

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/MapName.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/CacheName.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/ServiceName.html

Receive EntryProcessorEvents from a Specific Session

A typical use case is to obtain NamedCache and NamedMap instances from a Session. It is possible to
restrict events received by a method to only those related to caches owned by a specific Session by
annotating the method parameter with the @SessionName annotation.

The method below will only receive events for the caches owned by the Session named BackEnd:

@CoherenceEventListener
public void onEvent(@SessionName("BackEnd") EntryProcessorEvents event) {
 // TODO: process the event
}

3.7.2.8. Partition Level Transaction Events

A TransactionEvent is emitted in relation to all mutations in a single partition in response to
executing a single request. These are commonly referred to as partition level transactions. For
example, an EntryProcessor that mutates more than one entry (which could be in multiple caches)
as part of a single invocation will cause a partition level transaction to occur encompassing all of
those cache entries.

Transaction events are emitted by storage enabled cache services, they will only e received on the
same member that the partition level transaction occurred.

To subscribe to TransactionEvent simply create a Spring bean with a listener method annotated with
@CoherenceEventListener. The method should have a single parameter of type TransactionEvent.

For example, the onEvent method below will receive all transaction events emitted by storage
enabled cache services in the same JVM.

@CoherenceEventListener
public void onEvent(TransactionEvent event) {
 // TODO: process the event
}

Receive Specific TransactionEvent Types

There are a number of different TransactionEvent types.

• Committing - A COMMITTING event is raised prior to any updates to the underlying backing
map. This event will contain all modified entries which may span multiple backing maps. Use
the @Committing annotation

• Committed - A COMMITTED event is raised after any mutations have been committed to the
underlying backing maps. This event will contain all modified entries which may span multiple
backing maps. Use the @Committed annotation

To restrict the TransactionEvent types received by a method apply one or more of the annotations
above to the method parameter. For example, the method below will receive Committed events.

44

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/SessionName.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransactionEvent.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Inserting.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Inserted.html

@CoherenceEventListener
public void onEvent(@Committed TransactionEvent event) {
 // TODO: process the event
}

Receive TransactionEvent from a Specific Cache Service

Caches are owned by a Cache Service, it is possible to restrict events received by a method to only
those related to caches owned by a specific service by annotating the method parameter with the
@ServiceName annotation.

The method below will only receive events for the caches owned by the service named
StorageService:

@CoherenceEventListener
public void onEvent(@ServiceName("StorageService") TransactionEvent event) {
 // TODO: process the event
}

3.7.2.9. Partition Transfer Events

A TransferEvent captures information concerning the transfer of a partition for a storage enabled
member. Transfer events are raised against the set of BinaryEntry instances that are being
transferred.

TransferEvents are dispatched to interceptors while holding a lock on the partition
being transferred, blocking any operations for the partition. Event observer
methods should therefore execute as quickly as possible of hand-off execution to
another thread.

To subscribe to TransferEvent simply create a Spring bean with a listener method annotated with
@CoherenceEventListener. The method should have a single parameter of type TransferEvent.

For example, the onEvent method below will receive all transaction events emitted by storage
enabled cache services in the same JVM.

@CoherenceEventListener
public void onEvent(TransferEvent event) {
 // TODO: process the event
}

Receive Specific TransferEvent Types

There are a number of different TransferEvent types.

• Arrived - This TransferEvent is dispatched when a set of BinaryEntry instances have been
transferred to the local member or restored from backup.The reason for the event (primary

45

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/ServiceName.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html
https://coherence.community/23.03/api/java/com/tangosol/util/BinaryEntry.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html#getLocalMember()

transfer from another member or restore from backup) can be derived as follows:

TransferEvent event;
boolean restored = event.getRemoteMember() == event.getLocalMember();

Use the @Arrived annotation to restrict the received events to arrived type.

• Assigned - This TransferEvent is dispatched when a partition has been assigned to the local
member. This event will only be emitted by the ownership senior during the initial partition
assignment. Use the @Assigned annotation to restrict received events.

• Departing - This TransferEvent is dispatched when a set of BinaryEntry are being transferred
from the local member. This event is followed by either a Departed or Rollback event to indicate
the success or failure of the transfer. Use the @Departing annotation to restrict received events.

• Departed - This TransferEvent is dispatched when a partition has been successfully transferred
from the local member. To derive the BinaryEntry instances associated with the transfer,
consumers should subscribe to the Departing event that would precede this event. Use the
@Departed annotation to restrict received events.

• Lost - This TransferEvent is dispatched when a partition has been orphaned (data loss may have
occurred), and the ownership is assumed by the local member. This event is only be emitted by
the ownership senior. Use the @Lost annotation to restrict received events.

• Recovered - This TransferEvent is dispatched when a set of BinaryEntry instances have been
recovered from a persistent storage by the local member. Use the @Recovered annotation to
restrict received events.

• Rollback - This TransferEvent is dispatched when partition transfer has failed and was
therefore rolled back. To derive the BinaryEntry instances associated with the failed transfer,
consumers should subscribe to the Departing event that would precede this event. Use the
@Rollback annotation to restrict received events.

To restrict the TransferEvent types received by a method apply one or more of the annotations
above to the method parameter. For example, the method below will receive Lost events.

@CoherenceEventListener
public void onEvent(@Lost TransferEvent event) {
 // TODO: process the event
}

Multiple type annotations may be used to receive multiple types of TransferEvent.

Receive TransferEvent from a Specific Cache Service

Caches are owned by a Cache Service, it is possible to restrict events received by a method to only
those related to caches owned by a specific service by annotating the method parameter with the
@ServiceName annotation.

The method below will only receive events for the caches owned by the service named

46

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Arrived.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html#getLocalMember()
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html#getLocalMember()
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Assigned.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html#getLocalMember()
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Departing.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html#getLocalMember()
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Departed.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html#getLocalMember()
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Lost.html
https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/TransferEvent.html#getLocalMember()
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Recovered.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/Rollback.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/event/ServiceName.html

StorageService:

@CoherenceEventListener
public void onEvent(@ServiceName("StorageService") TransferEvent event) {
 // TODO: process the event
}

3.7.2.10. Unsolicited Commit Events

An UnsolicitedCommitEvent captures changes pertaining to all observed mutations performed
against caches that were not directly caused (solicited) by the partitioned service. These events may
be due to changes made internally by the backing map, such as eviction, or referrers of the backing
map causing changes.

Unsolicited commit events are emitted by storage enabled cache services, they will only e received
on the same member.

To subscribe to UnsolicitedCommitEvent simply create a Spring bean with a listener method
annotated with @CoherenceEventListener. The method should have a single parameter of type
UnsolicitedCommitEvent.

For example, the onEvent method below will receive all Unsolicited commit events emitted by
storage enabled cache services in the same JVM.

@CoherenceEventListener
public void onEvent(UnsolicitedCommitEvent event) {
 // TODO: process the event
}

3.8. Filter Binding Annotations
Filter binding annotations are normal annotations that are themselves annotated with the
@FilterBinding meta-annotation. A filter binding annotation represents a Coherence Filter and is
used to specify a Filter in certain injection points, for example a View (CQC), NamedTopic Subscriber
beans, event listeners, etc.

There are three parts to using a filter binding:

• The filter binding annotation

• An implementation of a FilterFactory that is annotated with the filter binding annotation. This
is a factory that produces the required Filter.

• Injection points annotated with the filter binding annotation.

We will put all three parts together in an example. Let’s use a Coherence NamedMap named plants
that contains plants represented by instances of the Plant class as map values. Among the various
properties on the Plant class there is a property called plantType and a property called height. In
this example, we want to inject a view that only shows large palm trees (any palm tree larger than

47

https://coherence.community/23.03/api/java/com/tangosol/net/events/partition/UnsolicitedCommitEvent.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/event/CoherenceEventListener.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/FilterBinding.html
https://coherence.community/23.03/api/java/com/tangosol/util/Filter.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/FilterFactory.html

20 meters). We would need a Filter that has a condition like the following: plantType ==
PlantType.PALM && height >= 20.

3.8.1. Create the filter binding annotation

First create a simple annotation, it could be called something like PlantNameExtractor

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

import com.oracle.coherence.spring.annotation.FilterBinding;

@FilterBinding ①
@Documented
@Retention(RetentionPolicy.RUNTIME)
public @interface LargePalmTrees { ②
}

① The annotation class is annotated with @FilterBinding

② The annotation name is PlantNameExtractor

In this case the annotation does not need any other attributes.

3.8.2. Create the FilterFactory

Now create the FilterFactory implementation that will produce instances of the required Filter.

import com.oracle.coherence.spring.annotation.FilterFactory;
import com.tangosol.util.Extractors;
import com.tangosol.util.Filter;
import com.tangosol.util.Filters;
import org.springframework.stereotype.Component;

@LargePalmTrees ①
@Component ②
public class LargePalmTreesFilterFactory<Plant>
 implements FilterFactory<LargePalmTrees, Plant> {
 @Override
 public Filter<Plant> create(LargePalmTrees annotation) { ③
 Filter<Plant> palm = Filters.equal("plantType", PlantType.PALM);
 Filter<Plant> height = Filters.greaterEqual(
 Extractors.extract("height"), 20);
 return Filters.all(palm, height);
 }
}

① The class is annotated with the PlantNameExtractor filter binding annotation

48

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/FilterFactory.html

② The class must be a Spring bean, let’s annotate it with @Component so that component scanning
will pick this class up as a Spring bean

③ The create method uses the Coherence filters API to create the required filter.

The parameter to the create method is the annotation used on the injection point. In this case the
annotation has no values, but if it did we could access those values to customize how the filter is
created.

For example, we can make the filter more general purpose by calling the annotation @PalmTrees and
by adding a value parameter representing the height like this:

@FilterBinding
@Documented
@Retention(RetentionPolicy.RUNTIME)
public @interface PalmTrees {
 String value();
}
@FilterBinding
@Documented
@Retention(RetentionPolicy.RUNTIME)
public @interface PalmTrees {
 int value() default 0;
}

We then need to modify our filter factory to use the height value:

import com.oracle.coherence.spring.annotation.FilterFactory;
import com.tangosol.util.Extractors;
import com.tangosol.util.Filter;
import com.tangosol.util.Filters;
import org.springframework.stereotype.Component;

@PalmTrees ①
@Component ②
public class PalmTreesFilterFactory<Plant>
 implements FilterFactory<PalmTrees, Plant> {
 @Override
 public Filter<Plant> create(PalmTrees annotation) { ③
 Filter<Plant> palm = Filters.equal("plantType", PlantType.PALM);
 Filter<Plant> height = Filters.greaterEqual(
 Extractors.extract("height"), annotation.value()); ④
 return Filters.all(palm, height);
 }
}

① The class is annotated with the more flexible PalmTrees filter binding annotation accepting a
height parameter

② The class must be a Spring bean, let’s annotate it with @Component so that component scanning

49

will pick this class up as a Spring bean

③ The create method uses the Coherence filters API to create the required filter

④ Instead of hard-coding the height, we use the value from the @PalmTrees annotation

3.8.3. Annotate the Injection Point

Now the application code where the view is to be injected can use the custom filter binding
annotation.

 @View ①
 @PalmTrees(1) ②
 @CoherenceCache("plants") ③
 private NamedMap<Long, Plant> palmTrees;

① The @View annotation indicates that this is a view rather than a plain NamedMap

② The @PalmTrees annotation links to the custom filter factory which is used to create the filter for
the view. The annotation value of 1 indicates that we are interested in all palm trees of at least 1
meter in height.

③ Due to Spring limitations regarding the injection of Maps, we use the @CoherenceMap annotation
to inject the NamedMap, which also has takes an optional value to specify the name of the cache.

3.9. Extractor Binding Annotations
ValueExtractor binding annotations are normal annotations that are themselves annotated with the
@ExtractorBinding meta-annotation. An extractor binding annotation represents a Coherence
ValueExtractor and is used to specify a ValueExtractor in certain injection points, for example a
View (CQC), NamedTopic Subscriber beans, MapEvent listeners, etc.

There are three parts to using an extractor binding:

• The extractor binding annotation

• An implementation of a ExtractorFactory that is annotated with the extractor binding
annotation. This is a factory that produces the required ValueExtractor.

• Injection points annotated with the extractor binding annotation.

As an example, let’s continue with our previous example, where we have a Coherence NamedMap
named plants that contains Plant instances as values. In this example we are interested in inject a
map of plant names instead of the actual plant instances. Each plant has a name property that we
will use for that purpose. We will need a ValueExtractor that extracts the name property and the
resulting map of plant names can be injected into our Spring beans.

3.9.1. Create the extractor binding annotation

First create a simple annotation called PlantName

50

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/ExtractorBinding.html
https://coherence.community/23.03/api/java/com/tangosol/util/ValueExtractor.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/ExtractorFactory.html

@ExtractorBinding ①
@Documented
@Retention(RetentionPolicy.RUNTIME)
public @interface PersonAge { ②
}

import com.oracle.coherence.spring.annotation.ExtractorBinding;
import com.oracle.coherence.spring.annotation.FilterBinding;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@ExtractorBinding ①
@Documented
@Retention(RetentionPolicy.RUNTIME)
public @interface PlantNameExtractor { ②
}

① The annotation class is annotated with @ExtractorBinding

② The annotation name is PlantNameExtractor

In this case the annotation does not need any other attributes.

3.9.2. Create the ExtractorFactory

Now create the ExtractorFactory implementation that will produce instances of the required
ValueExtractor.

import com.oracle.coherence.spring.annotation.ExtractorFactory;
import com.tangosol.util.Extractors;
import com.tangosol.util.ValueExtractor;
import org.springframework.stereotype.Component;

@PlantNameExtractor ①
@Component ②
public class PlantNameExtractorFactory<Plant>
 implements ExtractorFactory<PlantNameExtractor, Plant, String> {
 @Override
 public ValueExtractor<Plant, String> create(PlantNameExtractor annotation) { ③
 return Extractors.extract("name");
 }
}

① The class is annotated with the PlantNameExtractor extractor binding annotation

② The class must be a Spring bean, let’s annotate it with @Component so that component scanning
will pick this class up as a Spring bean

③ The create method uses the Coherence Extractors API to create the required extractor, in this

51

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/ExtractorFactory.html

case a trivial property extractor.

The parameter to the create method is the annotation used on the injection point. In this case the
annotation has no values, but if it did we could access those values to customize how the
ValueExtractor is created.

3.9.3. Annotate the Injection Point

Now the application code where the view is to be injected can use the custom extractor binding
annotation.

@View ①
@PersonAge ②
@Name("people") ③
private NamedMap<String, Integer> ages; ④
 @View ①
 @PlantNameExtractor ②
 @CoherenceMap("plants") ③
 private NamedMap<Long, String> plants; ④

① The @View annotation indicates that this is a view rather than a plain NamedMap

② The @PlantNameExtractor annotation links to the custom extractor factory used to create the
ValueExtractor for the view

③ Due to Spring limitations regarding the injection of Maps, we use the @CoherenceMap annotation
to inject the NamedMap, which also has takes an optional value to specify the underlying
cache/map name to use for the view.

④ Note that the NamedMap generics are now Long and String instead of Long and Plant as the Plant
values from the underlying cache are transformed into String values by extracting just the name
property.

3.10. Messaging with Coherence Topics
Spring Coherence integration provides support for message driven applications by virtue of
Coherence topics.

A Coherence NamedTopic is analogous to a queue or pub/sub topic, depending on the configuration
and application code. Messages published to the topic are stored in Coherence caches, so topics are
scalable and performant.

A typical stand-alone Coherence application would create a NamedTopic along with Publisher or
Subscriber instances to publish to or subscribe to topics. Injection of topics into Spring applications
is already covered in Injecting NamedTopics. With Spring messaging this becomes much simpler.

With Spring Coherence Messaging publishers and subscribers beans are created by writing suitably
annotated interfaces.

52

https://coherence.community/23.03/api/java/com/tangosol/net/topic/NamedTopic.html

3.10.1. Define Publishers - @CoherencePublisher

To create a topic Publisher that sends messages, you can simply define an interface that is
annotated with @CoherencePublisher. Also, your configuration class has to be annotated with the
@CoherencePublisherScan annotation. This is needed to specify the base package from which we
recursively scan for @CoherencePublisher annotated interfaces.

Config.java

@Configuration
@CoherencePublisherScan("com.example.app.services")
public class Config {
}

For example the following is a trivial @CoherencePublisher interface:

ProductClient.java

import com.oracle.coherence.spring.annotation.CoherencePublisher;
import com.oracle.coherence.spring.annotation.Topic;

@CoherencePublisher ①
public interface ProductClient {

 @Topic("my-products") ②
 void sendProduct(String message); ③

 void sendProduct(@Topic String topic, String message); ④
}

① The @CoherencePublisher annotation is used to designate this interface as a message publisher.

② The @Topic annotation indicates which topics the message should be published to

③ The method defines a single parameter, which is the message value. In this case the values being
published are String instances but they could be any type that can be serialized by Coherence.

④ It is also possible for the topic to be dynamic by making it a method argument annotated with
@Topic.

At run time Spring will produce an implementation of the above interface. You can retrieve an
instance of ProductClient either by looking up the bean from the ApplicationContext or by injecting
the bean with @Inject:

Using ProductClient

ProductClient client = applicationContext.getBean(ProductClient.class);
client.sendProduct("Blue Trainers");

53

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherencePublisher.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherencePublisherScan.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Topic.html

3.10.2. Reactive and Non-Blocking Method Definitions

The @CoherencePublisher annotation supports the definition of reactive return types (such as
Reactor Flux) as well as Futures.

The following sections cover possible method signatures and behaviour:

3.10.2.1. Mono Value and Return Type

Mono<Publisher.Status> sendBook(Mono<Book> book);

The implementation will return a Mono that when subscribed to will subscribe to the passed Mono
and send a message emitting the resulting Publisher.Status.

3.10.2.2. Reactor Flux Value and Return Type

Flux<Publisher.Status> sendBooks(Flux<Book> book);

The implementation will return a Reactor Flux that when subscribed to will subscribe to the passed
Flux and for each emitted item will send a message emitting the resulting Publisher.Status.

3.10.2.3. Future Return Type

Future<Publisher.Status> sendBooks(Mono<Book> book);

The implementation will return a Future with publisher’s status.

3.10.3. Define Subscribers - @CoherenceTopicListener

To listen to Coherence topic messages you can use the @CoherenceTopicListener annotation to
define a message listener.

The following example will listen for messages published by the ProductClient in the previous
section:

54

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
https://coherence.community/23.03/api/java/com/tangosol/net/topic/Publisher.Status.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://coherence.community/23.03/api/java/com/tangosol/net/topic/Publisher.Status.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherenceTopicListener.html

ProductListener.java

import com.oracle.coherence.spring.annotation.CoherenceTopicListener;
import com.oracle.coherence.spring.annotation.Topic;

@CoherenceTopicListener ①
public class ProductListener {

 @Topic("my-products") ②
 public void receive(String product) { ③
 System.out.println("Got Product - " + product);
 }
}

① The @CoherenceTopicListener annotation to indicate that this bean is a Coherence topic listener.

② The @Topic annotation is again used to indicate which topic to subscribe to.

③ The receive method defines single arguments that will receive the message value, in this case
the message is of type String.

3.10.4. Method Parameter Bindings

When using a Coherence topic Subscriber directly in application code, the receive method returns
an Element, which contains the message value and metadata. The annotated subscriber method can
take various parameter types that will bind to the element itself or to the message.

For example

@CoherenceTopicListener
@Topic("my-products")
public void receive(Element<Product> product) {
 // ... process message ...
}

The method above will be passed the Element received from the topic. By receiving the element, the
method has access to the message value and all the metadata stored with the message.

3.10.5. Committing Messages

An important part of Coherence topic subscribers is committing messages to notify the server that
they have been processed and guaranteeing at least once delivery. When using Micronaut
Coherence messaging every message will be committed after the handler method has successfully
processed the message. This behaviour can be controlled by adding a commit strategy to the
@CoherenceTopicListener annotation.

3.10.5.1. Default Commit Behaviour

If no commitStrategy field has been provided to the @CoherenceTopicListener annotation the default
behaviour is to synchronously call Element.commit() for every message received.

55

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherenceTopicListener.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/Topic.html
https://coherence.community/23.03/api/java/com/tangosol/net/topic/Subscriber.html
https://coherence.community/23.03/api/java/com/tangosol/net/topic/Subscriber.Element.html
https://coherence.community/23.03/api/java/com/tangosol/net/topic/Subscriber.Element.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherenceTopicListener.html

@CoherenceTopicListener
@Topic("my-products")
public void receive(Element<Product> product) {
 // ... process message ...
}

No commitStrategy field has been supplied to the @CoherenceTopicListener annotation.

3.10.5.2. Setting Commit Strategy

The @CoherenceTopicListener commitStrategy field is an enumeration of type CommitStrategy with
three values, SYNC, ASYNC and MANUAL.

• CommitStrategy.SYNC - This strategy is the default, and will synchronously commit every
message upon successful completion of the handler method, by calling Element.commit().

@CoherenceTopicListener(commitStrategy = CommitStrategy.SYNC)
@Topic("my-products")
public void receive(Product product) {
 // ... process message ...
}

• CommitStrategy.ASYNC - This strategy will asynchronously commit every message upon
successful completion of the handler method, by calling Element.commitAsync().

@CoherenceTopicListener(commitStrategy = CommitStrategy.ASYNC)
@Topic("my-products")
public void receive(Product product) {
 // ... process message ...
}

• CommitStrategy.MANUAL - This strategy will not automatically commit messages, all handling
of commits must be done as part of the handler method or by some external process.

@CoherenceTopicListener(commitStrategy = CommitStrategy.MANUAL)
@Topic("my-products")
public void receive(Element<Product> product) {
 // ... process message ...

 // manually commit the element
 element.commit();
}

In the example above a MANUAL commit strategy has used. The element will be committed by the
application code at the end of the handler method. To be able to manually commit a message the
method must take the Element as a parameter so that application code can access the commit

56

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherenceTopicListener.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CommitStrategy.html

methods.

3.10.5.3. Forwarding Messages with @SendTo

On any @CoherenceTopicListener method that returns a value, you can use the @SendTo
annotation to forward the return value to the topic or topics specified by the @SendTo annotation.

The key of the original ConsumerRecord will be used as the key when forwarding the message.

ProductListener.java

import com.oracle.coherence.spring.*;
import org.springframework.messaging.handler.annotation.SendTo;

@CoherenceTopicListener
public class ProductListener {

 @Topic("awesome-products") ①
 @SendTo("product-quantities") ②
 public int receive(Product product) {
 System.out.println("Got Product - " + product.getName() + " by " +
product.getBrand());
 return product.getQuantity(); ③
 }
}

① The topic subscribed to is awesome-products

② The topic to send the result to is product-quantities

③ The return value is used to indicate the value to forward

You can also do the same using Reactive programming:

57

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherenceTopicListener.html

ProductListener.java

import com.oracle.coherence.spring.*;
import org.springframework.messaging.handler.annotation.SendTo;
import reactor.core.publisher.Mono;

@CoherenceTopicListener
public class ProductListener {

 @Topic("awesome-products") ①
 @SendTo("product-quantities") ②
 public Mono<Integer> receiveProduct(Mono<Product> productSingle) {
 return productSingle.map(product -> {
 System.out.println("Got Product - " + product.getName() + " by " +
product.getBrand());
 return product.getQuantity(); ③
 });
 }
}

① The topic subscribed to is awesome-products

② The topic to send the result to is product-quantities

③ The return is mapped from the single to the value of the quantity

3.11. Cache Store
Coherence Spring provides dedicated support for database-backed caches using JPA. Spring Data’s
JPA Repositories make basic CRUD database access very simple. An application developer can just
provide an interface that extends JpaRepository with the required generic parameters and Spring
will do the rest.

Coherence caches that are backed by a database have two options for how the database integration
is provided:

• CacheLoader - an application developer writes an implementation of a CacheLoader to read data
from a database for a given key (or keys), convert it to entities that are then loaded into a cache
for the given keys.

• CacheStore - whilst a CacheLoader only loads from a database into a cache, a CacheStore (which
extends CacheLoader) also stores cached entities back to the database, or for entries deleted from
the cache, erases the corresponding values from the database. The parallels between a
CacheLoader or CacheStore and a JpaRepository should be pretty obvious.

The Coherence Spring core module provides two interfaces:

• JpaRepositoryCacheLoader, which extends both JpaRepository and CacheLoader

• JpaRepositoryCacheStore, which extends both JpaRepository and CacheStore.

To create a JPA repository cache loader or cache store, all a developer needs to do is extend the

58

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.repositories
https://coherence.community/23.03/api/java/com/tangosol/net/cache/CacheLoader.html
https://coherence.community/23.03/api/java/com/tangosol/net/cache/CacheStore.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/cachestore/JpaRepositoryCacheLoader.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/cachestore/JpaRepositoryCacheStore.html

relevant interface JpaRepositoryCacheLoader or JpaRepositoryCacheStore with the correct generic
parameters. We will illustrate the use of Cache Stores using the following example.

3.11.1. JPA Repository CacheStore Demo

In this demo we are show-casing how to use Spring Data JPA repository beans as Coherence
CacheStores in applications using the Coherence Spring project.

The demo is split into multiple Maven modules in order to show-case 2 use-cases:

• Embedded Coherence

• Connect to a remote Coherence instance cache using Coherence*Extend

The Maven Project is structured into the following modules:

• coherence-cachestore-demo-app Main entry point for the demo using an embedded
Coherence instance

• coherence-cachestore-demo-server Remote Coherence server we will connect to using
Coherence*Extend

• coherence-cachestore-demo-core Contains common code shared between the local app and
the remote Coherence server version

3.11.1.1. Data Model

At its core (and in the coherence-cachestore-demo-core module), the application has a simple class
called Person that is annotated with basic JPA annotations:

@Entity
@Table(name = "PEOPLE")
public class Person implements Serializable {

 /**
 * The unique identifier for this person.
 */
 @Id
 private Long id;

 /**
 * The age of this person.
 */
 private int age;

 /**
 * The person's first name.
 */
 private String firstname;

 /**
 * The person's last name.

59

https://github.com/coherence-community/coherence-spring
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-remote-clients/introduction-coherenceextend.html

 */
 private String lastname;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public String getFirstname() {
 return firstname;
 }

 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 public String getLastname() {
 return lastname;
 }

 public void setLastname(String lastname) {
 this.lastname = lastname;
 }

}

The identifier of a Person is defined as Long, so in our Coherence-based application we would put
these Person instances into a Coherence NamedMap<Long, Person>.

3.11.1.2. Writing a JPA Repository CacheStore

To write a JPA repository CacheStore that can be used by our people cache we need to create a
simple Spring Data repository interface:

60

import com.oracle.coherence.spring.cachestore.JpaRepositoryCacheStore;
import org.springframework.stereotype.Repository;

@Repository
public interface PersonRepository extends JpaRepositoryCacheStore<Person, Long> {

}

That is all the code required to write a CacheStore that can be plugged into Coherence. Spring Data
will take care of actually generating the implementation of the interface, and supplying that
implementation as a bean.

3.11.1.3. Embedded Coherence

In the embedded Coherence CacheStore demo we use a co-located Coherence instance that will start
as part of the application itself.

To use a CacheStore in Coherence, it needs to be configured in the Coherence cache configuration
file, which in the embedded use-case is coherence-cache-config.xml. In order to use the repository
bean as a CacheStore, we will make use of the Coherence Spring feature that allows injection of
Spring beans into the cache configuration file.

To use Spring bean injection in the configuration file we need to declare a custom namespace in the
root XML element that references the Coherence Spring NamespaceHandler.

coherence-cache-config.xml

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"

xmlns:spring="class://com.oracle.coherence.spring.namespace.NamespaceHandler"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config coherence-cache-config.xsd">

The xmlns:spring="class://com.oracle.coherence.spring.namespace.NamespaceHandler" line declares
the custom namespace, so elements with a prefix spring will be handled by the
com.oracle.coherence.spring.namespace.NamespaceHandler class. The custom namespace handler
allows us to use elements of the form <spring:bean>bean-name</spring:bean> anywhere in the
configuration that Coherence normally allows an <instance> element or a <class-scheme> element.

Thus, we can add a scheme to the <cache-schemes> section of the configuration that uses the
repository bean.

61

coherence-cache-config.xml

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>db-scheme</scheme-name>
 <service-name>StorageService</service-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <cachestore-scheme>
 <spring:bean>{repository-bean}</spring:bean>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

In the snippet above you can see the <spring:bean>{repository-bean}</spring:bean> element used as
the cache store. In this case we have not used the name of the repository bean directly, we have
used a parameter named repository-bean (XML values in curly-brackets in the <spring:bean>
element are treated as parameter macros). This allows us to map multiple caches to the same
scheme each with a different cache store - this is quite a common approach in Coherence for a
number of elements that may be configured in a scheme per-cache. We can now also add the cache
mapping for our people cache that will use the scheme above.

coherence-cache-config.xml

 <cache-mapping>
 <cache-name>people</cache-name>
 <scheme-name>db-scheme</scheme-name>
 <init-params>
 <init-param>
 <param-name>repository-bean</param-name>
 <param-value>personRepository</param-value>
 </init-param>
 </init-params>
 </cache-mapping>

In the mapping above, the cache name people maps to the scheme db-scheme that we created above.
As we mentioned above, we need to pass the actual bean name in the repository-bean parameter,
which we do by using the <init-params> element in the mapping. We set the <param-value> element
to the bean name, in this case personRepository.

62

The bean name used here is personRepository. This is the default name generated
by Spring for the PersonRepository class, which is the simple class name with the
first letter lowercase. If we did not want to rely on Spring generating a bean name
we could specify a name in the @Repository annotation on the PersonRepository
class.

If we had another cache with a different cache store, for example if we had an entity called
Location with a repository cache store class called LocationRepository, the bean name would default
to locationRepository, and we could add the following mapping:

<cache-mapping>
 <cache-name>locations</cache-name>
 <scheme-name>db-scheme</scheme-name>
 <init-params>
 <init-param>
 <param-name>repository-bean</param-name>
 <param-value>locationRepository</param-value>
 </init-param>
 </init-params>
</cache-mapping>

3.11.1.4. Running the Embedded Sample

This sample is just a simple Spring Boot application that exposes two endpoints to create/update
people and get people by id. The controller class for the two endpoints is very simple:

PersonController.java

@RestController
@RequestMapping(path = "/api/people")
@Transactional()
public class PersonController {

 /**
 * The {@link NamedMap} to store {@link Person} entities.
 */
 @CoherenceMap
 private NamedMap<Long, Person> people;

 @Autowired
 private PersonRepository personRepository;

 /**
 * Create a {@link Person} in the cache.
 * @param id the unique identifier for the person
 * @param firstName the person's first name
 * @param lastName the person's last name
 * @param age the person's age
 * @return the identifier used to create the person

63

 */
 @PostMapping
 public Long createPerson(@RequestParam("id") long id, @RequestParam("firstName")
String firstName,
 @RequestParam("lastName") String lastName, @RequestParam("age") int age) {
 Person person = new Person();
 person.setFirstname(firstName);
 person.setLastname(lastName);
 person.setAge(age);
 person.setId(id);
 people.put(id, person);
 return id;
 }

 /**
 * Returns the {@link Person} with the specified identifier.
 *
 * @param personId the unique identifier for the person
 * @return the {@link Person} with the specified identifier
 */
 @GetMapping("/{personId}")
 public Person getPerson(@PathVariable("personId") Long personId) {
 Person person = people.get(personId);
 if (person == null) {
 throw new ResponseStatusException(HttpStatus.NOT_FOUND, "Person " +
personId + " does not exist");
 }
 return person;
 }

 @GetMapping("/db/{personId}")
 public Person getPersonFromDb(@PathVariable("personId") Long personId) {
 Person person = this.personRepository.findById(personId).orElseThrow(() -> {
 throw new ResponseStatusException(HttpStatus.NOT_FOUND, "Person " +
personId + " does not exist");
 });
 return person;
 }
}

We use the Coherence Spring integration to inject a NamedMap into the controller. This will be for the
cache named people, which we configured to use the cache store in the configuration above.

In the createPerson method we use the request parameters to create a Person and put it into the
cache. The CacheStore will write this to the database.

In the getPerson method we retrieve the Person from the cache using the id from the request path,
loading from the database if there is no entry in the cache for the id.

We can build the example using Maven from the root directory of Coherence Spring:

64

./mvnw clean package -pl samples/cachestore-demo

This will build a Spring Boot jar that we can run the normal Spring Boot ways, for example:

java -jar samples/cachestore-demo/coherence-spring-cachestore-demo-
app/target/coherence-spring-cachestore-demo-4.0.0.jar

After the application has started we can try to get a Person using curl

curl -i -X GET http://localhost:8080/api/people/100

This should return a 404 response because there is no person in the database or cache with the id
100.

We can create a Person using a curl POST request:

curl -i -X POST http://localhost:8080/api/people \
 -d 'firstName=Joe' -d 'lastName=Smith' \
 -d 'age=21' -d 'id=100'

This will create the Person named Joe Smith with the id 100. This should return with a 200 response
to say the Person was successfully created and will be stored in the database.

If we re-run the GET request we should get Joe Smith.

curl -i -X GET http://localhost:8080/api/people/100
HTTP/1.1 200
Content-Type: application/json
Transfer-Encoding: chunked
Date: Thu, 19 Aug 2021 16:13:47 GMT

{"id":100,"age":21,"firstname":"Joe","lastname":"Smith"}%

3.11.1.5. Using Coherence*Extend

This is the slightly more complex version of the CacheStore demo. Instead of using an embedded
version Coherence, we will have a remote Coherence instance and the actual application will
connect to Coherence via Coherence*Extend.

We can build the example using Maven from the root directory of Coherence Spring:

./mvnw clean install -pl :coherence-spring-cachestore-demo-server -am -DskipTests

./mvnw clean install -pl :coherence-spring-cachestore-demo-app -am -DskipTests

65

We now have to start the Coherence Server as well as the Coherence Client App. We run both apps
using Spring Boot. Let’s start with the Coherence Server:

java -jar samples/cachestore-demo/coherence-spring-cachestore-demo-
server/target/coherence-spring-cachestore-demo-server-4.0.0.jar

Next we start the client app. It is actually the same app as used in the embedded Coherence use-
case. However, we will specify an additional Spring Boot profile, instructing the app to connect to
the Coherence server in client mode via Coherence*Extend:

java -jar samples/cachestore-demo/coherence-spring-cachestore-demo-
app/target/coherence-spring-cachestore-demo-app-4.0.0.jar \
--Dspring.profiles.active=remote

By activating the remote Spring Boot profile, we will configure Coherence for client mode and we
reference a different Cache Configuration XML file called remote-cache-config.xml.

3.11.1.6. Inspecting the Database

In the remote Coherence CacheStore demo, HSQL will be instantiated via the server module. This
allow the app as well as the server to access the HSQL database instance. That way we can also
inspect the data in the data more easily as we can inspect the database data via SQL tools such as
the open-source DBeaver.

66

https://dbeaver.io/

Chapter 4. Coherence Spring Cache
This section dives into the Coherence Spring Cache module. It explains how to use Coherence’s
support for the Spring Framework’s Cache Abstraction.

4.1. Introduction
Spring provides its own cache abstraction, allowing you to add caching to Java methods. Coherence
Spring provides an implementation of this abstraction for Oracle Coherence.

Spring’s Cache abstraction also supports JSR-107 which is also supported by Oracle
Coherence. As such you have another alternative for setting up caching.

If you are using JPA/Hibernate you may also consider using the Coherence support
for Hibernate’s second-level cache SPI, which is provided by the Coherence
Hibernate project.

4.2. Configuring Coherence Cache for Spring
As a start, please familiarize yourself with Spring’s Cache Abstraction by reading the following
resources:

• The Cache Abstraction chapter in the core Spring Framework reference guide

• Spring Boot’s reference documentation’s support regarding caching

Spring’s cache abstraction for Coherence will be automatically enabled as soon as you specify
@EnableCaching in your applications configuration classes. In that case a CoherenceCacheManager bean
implementation is registered as CacheManager. Of course, you can define your own CacheManager as
well, but in that case auto-configuration will back-off.

The autoconfiguration logic is defined in class
EnableCoherenceImportBeanDefinitionRegistrar.

67

https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache
https://jcp.org/en/jsr/detail?id=107
https://github.com/coherence-community/coherence-hibernate
https://github.com/coherence-community/coherence-hibernate
https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#boot-features-caching
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/configuration/EnableCoherenceImportBeanDefinitionRegistrar.html

Example 4. Defining your own CacheManager

Java

@Configuration
@EnableCaching
public class CacheConfiguration {
 @Bean
 public CacheManager cacheManager(Coherence coherence) {
 return new CoherenceCacheManager(coherenceInstance);
 }
}

XML

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/cache
https://www.springframework.org/schema/cache/spring-cache.xsd">

 <cache:annotation-driven/>

 <bean id="cacheManager"
class="com.oracle.coherence.spring.cache.CoherenceCacheManager">
 <constructor-arg ref="coherenceInstance"/>
 </bean>
</beans>

When the CacheManager gets instantiated it is configured with default settings that then get applied
for all underlying caches being created and used. Those settings are defined using the
CoherenceCacheConfiguration object. If not specified as a second (optional) constructor argument to
the CoherenceCacheManager, a default instance is created.

Thus, you can customize certain cache properties when instantiating the CoherenceCacheManager by
providing your own CoherenceCacheConfiguration instance as a second constructor argument. For
example, you can set the time-to-live (ttl) property to specify that caches shall expire after a
certain period.

By default, the underling time-to-live property for caches used for the Spring
cache abstraction is 0. This means that cache entries typically do not expire.
However, you can also specify cache expiration settings via the coherence-cache-
config.xml.

68

Example 5. Defining a CacheManager with additional cache configuration

Java

@Configuration
@EnableCaching
public class CacheConfiguration {
 @Bean
 public CacheManager cacheManager(Coherence coherence) {
 CoherenceCacheConfiguration cacheConfiguration =
 new CoherenceCacheConfiguration(Duration.ofMillis(1234));
 return new CoherenceCacheManager(coherenceInstance, cacheConfiguration);
 }
}

XML

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/cache
https://www.springframework.org/schema/cache/spring-cache.xsd">

 <cache:annotation-driven/>

 <bean id="cacheManager"
class="com.oracle.coherence.spring.cache.CoherenceCacheManager">
 <constructor-arg ref="coherenceInstance"/>
 <constructor-arg>
 <bean
class="com.oracle.coherence.spring.cache.CoherenceCacheConfiguration">
 <constructor-arg>
 <bean class="java.time.Duration" factory-method="ofMillis">
 <constructor-arg value="1234"/>
 </bean>
 </constructor-arg>
 </bean>
 </constructor-arg>
 </bean>
</beans>

69

You don’t need to define a CoherenceCacheManager to configure the default
configuration. You can also just define a CoherenceCacheConfiguration bean in your
Spring application context. As long as there is only a single bean of that type
defined, the default CoherenceCacheManager that is being implicitly created will use
that bean.

Please consult the Quickstart chapter to see an example using Spring’s cache abstraction support
with Spring Boot. Coherence Spring also provides an example of using Spring Framework (without
Spring Boot). The source code for the samples is part of the Coherence Spring projects:

• coherence-spring-demo-classic

• coherence-spring-demo-boot

If you’re using Spring Boot, please continue reading the Spring Boot specific chapter on caching.

4.3. Coherence Caches and Locking
Oracle Coherence supports the explicit concurrency control of cache entries using locks. The
configuration class CoherenceCacheConfiguration provides 3 options to specify the relevant settings:

useLocks

This option lets you specify whether you want to use locks or not. This options defaults to true,
meaning that locking is enabled by default.

When using caching via Coherence*Extend or gRPC, you should disable locking as
it is not supported.

lockTimeout

When locking cache entries, you can set a cache timeout. The specified value in milliseconds,
instructs Coherence how long it shall try to acquire a lock for the cache entry. If a timeout occurs,
Coherence Spring will throw an exception. A value of -1 will cause Coherence to block indefinitely.
Specifying 0 will cause Oracle Coherence not to wait at all. By default, the value is set to 0.

lockEntireCache

While generally not recommended, the option exists to also lock they entire cache (not just the
specific cache entry). This option defaults to false.

For further information, please read the corresponding chapter Using Explicit Locking for Data
Concurrency in the Oracle Coherence reference guide.

70

https://github.com/coherence-community/coherence-spring/tree/main/samples/coherence-spring-demo/coherence-spring-demo-classic
https://github.com/coherence-community/coherence-spring/tree/main/samples/coherence-spring-demo/coherence-spring-demo-boot
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-applications/performing-transactions.html#GUID-4EAD6E6F-D074-4171-85AE-6F8198DDE33C
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-applications/performing-transactions.html#GUID-4EAD6E6F-D074-4171-85AE-6F8198DDE33C

Chapter 5. Coherence Spring Session
This section dives into the Coherence Spring Session module. It explains how to use Coherence’s
support for Spring Session.

5.1. Getting Started
In this chapter you will learn how to configure Coherence as an HTTP session store using Spring
Session.

First you need to add the coherence-spring-session dependency:

Example 6. Adding the Coherence Spring Session Dependency

Maven

<dependencies>
 <dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-session</artifactId>
 <version>4.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.oracle.coherence.ce</groupId>
 <artifactId>coherence</artifactId>
 <version>23.03</version>
 </dependency>
</dependencies>

Gradle

dependencies {
 compile("com.oracle.coherence.spring:coherence-spring-session:4.0.0")
 compile("com.oracle.coherence.ce:coherence:23.03")
}

Coherence Spring support for Spring Session can be used for either the free
Coherence Community Edition (CE) or the commercial version. Coherence Spring
does not bring in the Coherence dependency automatically but users must specify
the Coherence dependency explicitly.

In order to enable Spring Session support for Coherence, make sure Coherence is enabled and then
enable Spring Session using the @EnableCoherenceHttpSession annotation.

71

https://docs.spring.io/spring-session/docs/current/reference/html5/
https://coherence.community/
https://docs.spring.io/spring-session/docs/current/reference/html5/
https://docs.spring.io/spring-session/docs/current/reference/html5/

Enabling Coherence Spring Sessions

@Configuration
@EnableCoherence
@EnableCoherenceHttpSession(①
 session = "coherence_session", ②
 cache = "spring:session:sessions", ③
 flushMode = FlushMode.ON_SAVE, ④
 sessionTimeoutInSeconds = 1800 ⑤
)
static class CoherenceSessionConfig {
}

① Enables Spring Session support for Coherence

② Specify the name of the Coherence Session. Optional. Defaults to Coherence' default session.

③ The name of the cache to use. Optional. Defaults to spring:session:sessions.

④ The FlushMode to use. Optional. Defaults to FlushMode.ON_SAVE.

⑤ The session timeout. Optional. Defaults to 1800 seconds (30 minutes)

Are you running Coherence as a dedicated server instance? Then you need to make sure that your
Coherence server may need one or more additional dependencies on its classpath for serialization.
Depending on your requirements, you may need Coherence Spring Session, Spring Security Core,
Spring Security Web. Please also ensure that dependency version between Coherence server and
application clients matches exactly.

5.2. POF Serialization
In case that you configured the cache using POF serialization, additional POF configuration for the
class MapSession is necessary:

POF Configuration

 <user-type>
 <type-id>2001</type-id>
 <class-name>org.springframework.session.MapSession</class-name>
 <serializer>
 <class-
name>com.oracle.coherence.spring.session.serialization.pof.MapSessionPofSerializer</cl
ass-name>
 </serializer>
 </user-type>

Depending on your serialization requirements and your session data, additional
POF configuration may be necessary.

72

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-applications/using-portable-object-format.html#GUID-F331E5AB-0B3B-4313-A2E3-AA95A40AD913

5.3. Spring Session Sample
This Coherence Spring source code repository provides a dedicated example application,
illustrating the usage of Spring Session and Spring Security using Spring Boot.

The example application show-cases 2 use-cases:

• Use Spring Session with embedded Coherence instances and Java serialization

• Use Spring Session with remote Coherence instances (Coherence*Extends) and Java
serialization

Even though this demo is targeting Spring Session, we use Spring Security as well, since the
authentication details are stored in the session as well. In regard to authentication, users have 2
choices:

• A user can POST a JSON request containing the username and password in the body of the
request.

• Use basic authentication

The username is coherence, and the password rocks.

Example Authentication Request

 { "username": "coherence", "password": "rocks" }

Once successfully authenticated, the application will return a 2xx HTTP status with an empty body
and a session cookie. An Authentication failure, on the other hand, produces a non-2xx HTTP status
with an empty body. The application has an endpoint that responds to a GET request to the URL
/hello that returns the string Hello Coherence. All endpoints require an authenticated user using
the session cookie or the username and password.

5.3.1. Start Spring Session with Embedded Coherence Instances

Build the Coherence Server instance

 $./mvnw clean package -pl samples/spring-session-demo/spring-session-demo-app

Now we are ready to run the application. Let’s launch 2 instances, one listening on the pre-
configured port 8090, and the other one on port 8091.

Run the Spring Boot application

 $ java -jar samples/spring-session-demo/spring-session-demo-app/target/spring-
session-demo-app-4.0.0.jar
 $ java -jar samples/spring-session-demo/spring-session-demo-app/target/spring-
session-demo-app-4.0.0.jar --server.port=8091

73

https://spring.io/projects/spring-security
https://spring.io/projects/spring-boot

5.3.2. Spring Session with Remote Coherence Instances

Build the Coherence Server instance

 $./mvnw clean package -pl samples/spring-session-demo/spring-session-demo-server

Build the Application instance

 $./mvnw clean package -pl samples/spring-session-demo/spring-session-demo-app

Now we are ready to run the application. We will activate the coherence-client Spring Boot profile
as well:

Run the Spring Boot application

 $ java -jar samples/spring-session-demo/spring-session-demo-app/target/spring-
session-demo-server-4.0.0.jar
 $ java -jar samples/spring-session-demo/spring-session-demo-app/target/spring-
session-demo-app-4.0.0.jar

5.3.3. Accessing the REST Endpoints

Log into the application using CURL

 $ curl -i -c cookie.txt \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X POST --data '{"username": "coherence", "password": "rocks"}' \
 "http://localhost:8090/login"

Let’s access the HelloController

 $ curl -i -b cookie.txt \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X GET "http://localhost:8090/hello"

5.3.4. Spring Session Actuator

Using Spring Boot’s Actuator endpoints, we can introspect the session using the Sessions actuator at
localhost:8090/actuator/sessions?username=coherence.

74

https://curl.se/
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/#sessions
http://localhost:8090/actuator/sessions?username=coherence

Retrieving session information for user coherence

 $ curl -i -b cookie.txt \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X GET "http://localhost:8090/actuator/sessions?username=coherence"

5.3.5. Generate Docker Image

If you prefer to use Docker, you can create an image using:

Generate a Docker image

 $ mvn spring-boot:build-image -pl samples/spring-session-demo/spring-session-demo-app
-Dspring-boot.build-image.imageName=coherence/spring_session_demo

5.4. Session Expiration Strategies
When dealing with the expiration of cache entries, you generally have 2 options in Coherence:

• Set the expiration time for each put operation explicitly

• Configure caches in your coherence-cache-config.xml file

When you define a session timeout via the application, for example
@EnableCoherenceHttpSession(sessionTimeoutInSeconds = 1000), the session expiration will be set for
each put-operation in CoherenceIndexedSessionRepository.

If not set in the application, Coherence Spring will expire HTTP session caches in
1800 seconds (30 minutes).

If you rather prefer defining the session expiration timeouts in your coherence-cache-config.xml
file, you should set the session timeout in the application to 0, for instance
@EnableCoherenceHttpSession(sessionTimeoutInSeconds = 0). That way, put operations will never to
set an expiration value for the cache entry. You can then set the expiry-delay cache configuration
element for your cache in the coherence-cache-config.xml file.

In regard to the question, whether one strategy or the other strategy is preferable: It is mostly a
matter of preference. You do have, however, a bit more control when configuring expiration logic
via the coherence-cache-config.xml file, as you have the ability to define custom eviction policies.

For more information, please consult the respective chapter on Controlling the Growth of a Local
Cache in the Coherence reference guide.

The underlying expiry delay parameter in Coherence is defined as an integer and
is expressed in milliseconds. Therefore, the maximum amount of time can never
exceed Integer.MAX_VALUE (2147483647) milliseconds or approximately 24 days.

75

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-applications/configuring-caches.html#GUID-B57A0E9B-23F2-4099-86D7-6DDD54BBC45C

Chapter 6. Coherence Spring Data

6.1. Introduction
The Spring Data Coherence module provides integration with Coherence data grids. Key functional
areas of Spring Data Coherence are a POJO centric model for interacting with a Coherence data grid
and easily writing a Repository style data access layer.

6.2. Features
• Spring configuration support using Java-based @Configuration classes.

• Automatic implementation of Repository interfaces

• Rich query and event features from Coherence

• Native asynchronous repository support

• Projections

6.3. Getting Started
Example 7. Coherence Spring Data Dependencies

Maven

<dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-data</artifactId>
 <version>4.0.0</version>
</dependency>

Gradle

implementation("com.oracle.coherence.spring:coherence-spring-data:4.0.0")

6.4. Defining Repositories
Before proceeding, please be familiar with the Spring Data Commons documentation, as this
section will assume some familiarity with Spring Data.

Simple repositories such as the following will, of course, work as expected:

public interface PersonRepository extends CrudRepository<String, Person> {
 // ...
}

76

https://docs.spring.io/spring-data/commons/docs/current/reference/html/

However, it is recommended to extend the CoherenceRepository interface, to fully utilize the
features Coherence for Spring Data has to offer such as:

• Powerful projection features

• Flexible in-place entity updates

• First-class data aggregation support

• Stream API support

• Event listener support

• Declarative acceleration and index creation

• Native asynchronous support

Please also see the chapter Using the Repository API of the Coherence reference documentation for
more details on these features.

Example extending the blocking CoherenceRepository interface:

import com.oracle.coherence.spring.data.repository.CoherenceRespository;

// ...

public interface PersonRepository extends CoherenceRepository<String, Person> {
 // ...
}

or for the non-blocking flavor:

import com.oracle.coherence.spring.data.repository.CoherenceAsyncRespository;

// ...

public interface PersonRepository extends CoherenceAsyncRepository<String, Person> {
 // ...
}

6.4.1. Identifying the Coherence NamedMap

The Coherence NamedMap that will be used by the Repository implementation will be based on the
type name in the Repository class assuming the Repository name follows the format of
[Type]Repository (e.g., PersonRepository will use a NamedMap called person). If this is not desired,
the name may instead be passed by the @CoherenceMap annotation. For example:

77

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/data/repository/CoherenceRepository.html
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-applications/using-repository-api.html

import com.oracle.coherence.spring.data.config.CoherenceMap;
import com.oracle.coherence.spring.data.repository.CoherenceRespository;

// ...

@CoherenceMap("people")
public interface PersonRepository extends CoherenceRepository<String, Person> {
 // ...
}

6.5. Mapping Entities
As Coherence is, at its core, a key-value store, mapping Entities for use with a Coherence Repository
is relatively simple as only the id needs to be annotated. It is possible to use either
org.springframework.data.annotation.Id or javax.persistence.Id to denote the entity’s id.

For example:

public class Person implements Serializable {
 @org.springframework.data.annotation.Id
 protected String id;

 // ---- person functionality ----
}

6.6. Using the Repository
In order to enable Coherence-based Repositories, you must use the @EnableCoherenceRepositories
annotation. A simple configuration example would be:

import com.oracle.coherence.spring.configuration.annotation.EnableCoherence;
import
com.oracle.coherence.spring.configuration.data.config.EnableCoherenceRepositories;

// ...

@Configuration
@EnableCoherence
@EnableCoherenceRepositories
public static class Config {
}

Similarly to other Spring Data implementations, the @EnableCoherenceRepositories annotation offers
several configuration options to configure how Spring will search for repositories. Please see the
API docs for details.

78

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/data/config/EnableCoherenceRepositories.html
https://spring.coherence.community/4.0.0/refdocs/api/

6.6.1. Finder Queries

One of the benefits of Spring Data is the ability to define queries on the Repository interface using
Spring Data’s finder query syntax. For example:

import com.oracle.coherence.spring.data.repository.CoherenceRespository;
import com.oracle.coherence.spring.data.model.Author;
import com.oracle.coherence.spring.data.model.Book;
import com.tangosol.util.UUID;

// ...

public interface BookRepository extends CoherenceRepository<Book, UUID> {
 List<Book> findByAuthor(Author author);
 // other finders
}

It should be noted that finder queries defined on either the blocking or non-blocking Coherence
repository will always execute in a blocking manner. For asynchronous versions of these methods,
please use Spring’s Async Method support.

import com.oracle.coherence.spring.data.config.CoherenceMap;
import com.oracle.coherence.spring.data.model.Author;
import com.oracle.coherence.spring.data.model.Book;
import com.oracle.coherence.spring.data.repository.CoherenceAsyncRepository;
import com.tangosol.util.UUID;

import org.springframework.scheduling.annotation.Async;

// ...

@CoherenceMap("book")
public interface CoherenceBookAsyncRepository extends CoherenceAsyncRepository<Book,
UUID> {

 @Async
 CompletableFuture<List<Book>> findByAuthor(Author author);
}

Don’t forget to include the @EnableAsync annotation on the configuration:

79

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories.query-methods.details
https://spring.io/guides/gs/async-method/

import com.oracle.coherence.spring.configuration.annotation.EnableCoherence;
import
com.oracle.coherence.spring.configuration.data.config.EnableCoherenceRepositories;
import org.springframework.scheduling.annotation.EnableAsync;

// ...

@Configuration
@EnableAsync
@EnableCoherence
@EnableCoherenceRepositories
public static class Config {
}

6.7. Projections
Spring Data Coherence module supports projections as defined in Spring Data Projections
documentation. This allows us, among other things, to transfer a subset of the entities properties
when closed projections are used.

Imagine a repository and aggregate root type such as the following example:

@Entity
public class Book implements Cloneable, Serializable {
 @Id
 protected final UUID uuid;
 protected String title;
 protected Author author;
 protected int pages;
 protected Calendar published;
}

@CoherenceMap("book")
interface BookRepository extends CrudRepository<Book, UUID> {

 List<BookProjection> findByTitle(String title);

 // ...
}

6.7.1. Interface-based Projections

The simplest way to simplify the result is to declare an interface that exposes methods reading the
desired properties, as shown in the following example:

80

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#projections

A projection interface to retrieve a subset of attributes

interface BookTitleAndPages {

 String getTitle();
 int getPages();
}

A repository using an interface based projection with a query method

interface BookRepository extends CrudRepository<Book, UUID> {

 List<BookTitleAndPages> findByTitle(String title);
}

The query execution engine creates proxy instances of that interface at runtime for each element
returned and forwards calls to the exposed methods to the target object.

Projections can be used recursively as shown in the following example:

A projection interface to retrieve a subset of attributes

interface BookSummary {

 String getTitle();
 int getPages();
 AuthorSummary getAuthor();

 interface AuthorSummary {
 String getFirstName();
 }
}

6.7.2. Closed Projections

A projection interface whose accessor methods all match properties of the target aggregate is
considered to be a closed projection. The following example is a closed projection:

A closed projection

interface BookTitleAndPages {

 String getTitle();
 int getPages();
}

81

6.7.3. Open Projections

Accessor methods in projection interfaces can also be used to compute new values by using the
@Value annotation, as shown in the following example:

An open projection

interface BookTitleAndAuthor {

 @Value("#{target.author.firstName + ' - ' + target.title}")
 String getTitleAndAuthor();
}

A projection interface using @Value is an open projection. Spring Data cannot apply query execution
optimizations in this case, because the SpEL expression could use any attribute of the aggregate
root.

Default methods also can be used for open projection interfaces:

A projection interface using a default method for custom logic

interface BookTitleAndAuthor {

 default String getTitleAndAuthor() {
 return getAuthor().getFirstName().concat(' - ').concat(getTitle());
 }
}

A more flexible option is to implement the custom logic in a Spring bean:

A projection interface using a default method for custom logic

@Component
class MyBean {

 String getTitleAndAuthor(Book book) {
 return book.getAuthor().getFirstName().concat(' - ').concat(book.getTitle());
 }
}

interface BookTitleAndAuthor {

 @Value("#{@myBean.getTitleAndAuthor(target)}")
 String getTitleAndAuthor();
}

Methods backed by SpEL expression evaluation can also use method parameters, which can then be
referred to from the expression. The method parameters are available through an Object array
named args. The following example shows how to get a method parameter from the args array:

82

A sample Book object

interface NameOnly {

 @Value("args[0] + ' ' + #{target.author.firstName}")
 String getHonorificName(String honorific);
}

6.7.4. Nullable Wrappers

Getters in projection interfaces can make use of nullable wrappers for improved null-safety.
Currently supported wrapper types are:

• java.util.Optional

• com.google.common.base.Optional

• scala.Option

• io.vavr.control.Option

A projection interface using nullable wrappers

interface TitleOnly {

 Optional<String> getTitle();
}

6.7.5. Class-based Projections (DTOs)

Another way of defining projections is by using value type DTOs (Data Transfer Objects) that hold
properties for the fields that are supposed to be retrieved - similar to the projection interfaces
except that no proxying happens and no nested projections can be applied.

The fields to be loaded are determined from the parameter names of the constructor that is
exposed.

The following example shows a projecting DTO:

83

A projecting DTO

class BookTitleAndPages {
 private final String title;
 private final int pages;

 BookTitleAndPages(String title, int pages) {
 this.title = title;
 this.pages = pages;
 }

 String getTitle() {
 return this.title;
 }

 int getPages() {
 return this.pages;
 }

 // equals(…) and hashCode() implementations
}

6.7.6. Dynamic Projections

It’s possible to select the return type to be used at invocation time (up to now all examples shown
exact projection type to be used as a return type). To apply dynamic projections, use a query
method such as the one shown in the following example:

A repository using a dynamic projection parameter

@CoherenceMap("book")
interface BookRepository extends CrudRepository<Book, UUID> {

 <T> Collection<T> findByTitle(String title, Class<T> type);
}

Using a repository with dynamic projections

Collection<BookSummary> aggregates = books.findByTitle("Shadow", BookSummary.class);

Collection<BookTitleAndPages> aggregates = books.findByTitle("Remember",
BookTitleAndPages.class);

84

Chapter 7. Coherence Spring Boot
This section dives into the Coherence Spring Boot module. It explains how to use Coherence’s
dedicated support for Spring Boot, e.g., Autoconfiguration.

7.1. Getting Started
In order to start using Coherence with Spring Boot you have to add the coherence-spring-boot-
starter dependency as well as the desired version of Coherence.

Example 8. Adding the Coherence Spring Boot Starter Dependency

Maven

<dependencies>
 <dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-boot-starter</artifactId>
 <version>4.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.oracle.coherence.ce</groupId>
 <artifactId>coherence</artifactId>
 <version>23.03</version>
 </dependency>
</dependencies>

Gradle

dependencies {
 compile("com.oracle.coherence.spring:coherence-spring-boot-starter:4.0.0")
 compile("com.oracle.coherence.ce:coherence:23.03")
}

As Coherence Spring takes advantage of the new Coherence Bootstrap API, it
requires Oracle Coherence CE version 20.12 or higher.

7.2. Using Coherence with Spring Boot
By adding the coherence-spring-boot-starter dependency, AutoConfiguration will be activated via
the CoherenceAutoConfiguration class. This will also bind the CoherenceProperties class for further
configuration. The YAML configuration for Spring Boot’s Coherence support may look like the
following:

85

https://docs.spring.io/spring-boot/docs/current/reference/html/
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/boot/autoconfigure/CoherenceAutoConfiguration.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/boot/autoconfigure/CoherenceProperties.html

coherence:
 logging:
 destination: slf4j
 logger-name: MyCoherence
 sessions:
 - name: default
 config: "coherence-cache-config.xml"
 priority: 1
 - name: test
 config: "test-coherence-config.xml"
 priority: 2
 properties:
 coherence.log.limit: 400
 coherence.log.level: 1

The following configuration properties are available.

Table 1. Coherence Configuration Properties

Key Default Value Description

coherence.logging.destination slf4j The type of the logging
destination.

coherence.logging.severity-level Specifies which logged
messages are emitted to the log
destination. The legal values are
-1 to 9. No messages are emitted
if -1 is specified. More log
messages are emitted as the log
level is increased.

coherence.logging.logger-name Coherence Specifies a logger name within
chosen logging system

coherence.logging.message-
format

Specifies how messages that
have a logging level specified
are formatted before passing
them to the log destination.

coherence.logging.character-
limit

Specifies the maximum number
of characters that the logger
daemon processes from the
message queue before
discarding all remaining
messages in the queue

coherence.sessions.<type> N/A Indicates the type of the
session. One of the following:
grpc (deprecated), server, client

86

Key Default Value Description

coherence.sessions.<type>[0].na
me

Name of the session.

coherence.sessions.<type>[0].co
nfig

The Coherence cache
configuration URI for the
session

coherence.sessions.<type>[0].pr
iority

SessionConfiguration#DEFAULT_P
RIORITY

The priority order to be used
when starting the session.
Sessions will be started with the
lowest priority first.

coherence.sessions.<type>[0].sc
ope-name

The scope name for the session.

coherence.instance.type Depends on session type. As
soon as you specify a server
session, it defaults to cluster

Type of the Coherence instance:
cluster or client

coherence.server.startup-
timeout

5m Overrides the default startup-
timeout when starting
Coherence.

Session-related configuration properties are defined based on the session type in:

• AbstractSessionConfigurationBean

• SessionConfigurationBean

• GrpcSessionConfigurationBean (deprecated)

Many properties are translated into native Coherence properties. If both Spring
Boot property AND a native property coherence.properties.* are configured, the
Spring Boot property is used.

As of Coherence Spring 4.0, the GrpcSessionConfigurationBean has been deprecated.
Please use the SessionConfigurationBean in that case. Since Coherence 22.06.2,
relevant gRPC configuration can be configured directly in the coherence-cache-
config.xml file as described in the Coherence reference guide chapter Configuring
the Coherence gRPC Client.

If the provided Spring Boot configuration properties are not sufficient for your needs, you can also
specify any of the native Coherence properties. For a list of available native properties, please
consult the reference guide chapter on System Property Overrides.

7.3. Support of the Spring Boot ConfigData API
Since Spring Boot 2.4.x, you can define your own custom config locations. This allows you to
import these config locations as property sources. As such, Coherence Spring allows you to use a
Coherence cluster as a source of configuration data for your Spring Boot based applications.

87

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/configuration/session/AbstractSessionConfigurationBean.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/configuration/session/SessionConfigurationBean.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/configuration/session/GrpcSessionConfigurationBean.html
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-remote-clients/using-coherence-java-grpc-client.html#GUID-76F8E59F-3933-45CD-8C21-C13072D4D46D
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-remote-clients/using-coherence-java-grpc-client.html#GUID-76F8E59F-3933-45CD-8C21-C13072D4D46D
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206/develop-applications/system-property-overrides.html#GUID-32230D28-4976-4147-A887-0A0120FF5C7E
https://spring.io/blog/2020/08/14/config-file-processing-in-spring-boot-2-4

Please also consult the Spring Boot reference guide on Externalized Configuration,
especially the chapter on Importing Additional Data.

 Please also see the chapter on Coherence Spring Cloud Config.

You can trigger the import of remote configuration properties with the Spring Boot property
spring.config.import using the value coherence:. You will also need the corresponding Coherence
config-client configured to specify any remote connection settings for your Coherence cluster as
well as settings specifying how properties will be applied, e.g., the name of the application used to
fetch remote properties.

spring:
 config:
 import: "coherence:"
coherence:
 config-client:
 application-name: berlin
 profile: kona

Many properties have sensible default values. Please see class CoherenceConfigClientProperties for
details.

7.4. Caching with Spring Boot
If you have not already done so, please read the chapter Configuring Coherence Cache for Spring
first.

In this chapter, we see how we can use caching with Coherence in Spring Boot. As long as
coherence-spring-boot-starter is added to your project, and caching is enabled via @EnableCaching,
Coherence Autoconfiguration will automatically provide a CoherenceCacheManager (implementing
Spring’s CacheManager) to the ApplicationContext. However, the CacheManager is only added if no
CacheManager was configured explicitly beforehand.

Once that is in place, you can take advantage of Spring’s Cache abstraction backed by Coherence
and use Spring’s annotations such as @Cacheable, @CacheEvict, @CachePut etc.

When learning about Coherence’s Spring cache abstraction support, please
familiarize yourself with the following resources:

• Coherence Spring Quickstart chapter

• Coherence Core Spring Cache Support

• Spring Boot’s reference documentation’s support regarding caching

• The Cache Abstraction chapter in the core Spring Framework reference guide

88

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#boot-features-external-config
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#boot-features-external-config-files-importing
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/boot/config/CoherenceConfigClientProperties.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/boot/autoconfigure/CoherenceAutoConfiguration.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/cache/CoherenceCacheManager.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/cache/CacheManager.html
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#boot-features-caching
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#boot-features-caching
https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache

7.4.1. Configure Circuit Breakers with Resilience4j

Generally, it is recommended to configure and run Coherence as part of your application as a
cluster member. However, caching can also be configured using Coherence in client mode via
Coherence*Extend or gRPC. However, in client mode you may encounter failures and/or reliability
situations due to network issues resulting in cache failures. In those situations, it would be
desirable to retrieve the data from the persistence store instead, until the connectivity is being
restored. Similarly, your application may encounter request timeout issues when retrieving data
from the cache.

This is where the circuit breaker pattern can be quite helpful, allowing you to gracefully degrade
functionality via configurable fallback methods. Spring Boot has excellent support via Resilience4j,
a fault tolerance library.

Coherence Spring includes an example application that illustrates a basic circuit breaker use-case
via Resilience4j. In this example a Spring Boot-based application has REST endpoints to retrieve
Books:

• GET /api/books - Retrieve all books

• GET /api/books/1234 - Retrieve a single book

• DELETE /api/books/1234 - Evict a book from the Coherence cache

By default, 2 books are inserted into the in-memory database AND into the Coherence cache. The
application uses Spring’s cache abstraction backed by Coherence. The application is configured to
connect to Coherence on a separate node via Coherence*Extend. The use-case of the application is
that when you shut down the Coherence server, the application won’t be able to retrieve cached
domain data from Coherence. Instead, the Resilience4j circuit breaker will catch the connection
exception and invoke a fallback method. In this case the data is returned from the main persistence
store, bi-passing the Spring cache until the connection to the Coherence server has been restored.

7.4.1.1. Running the Example

The example application consists of 2 applications:

• circuit-breaker-cache-demo-server - The stand-alone Coherence instance

• circuit-breaker-cache-demo-app - The client application that will connect to the Coherence
server via Coherence*Extend

Let’s first run the server:

cd samples/circuit-breaker-cache-demo/circuit-breaker-cache-demo-server
mvn spring-boot:run

Now we need to run the actual application:

cd samples/circuit-breaker-cache-demo/circuit-breaker-cache-demo-app
mvn spring-boot:run

89

https://github.com/resilience4j/resilience4j/
/Users/runner/work/coherence-spring/coherence-spring/coherence-spring-docs/../samples/circuit-breaker-cache-demo

When the application starts, 2 books are added not only to the persistence store (HSQLDB) but also
to the Coherence cache. However, this is not true for the retrieve of all books in this example.

Get all books

When you retrieve a list of all books. You will see that the main relevant business method is
executed and the data retrieved from the database. But at this point the collection of books is added
to the Coherence cache for the first time.

List all books

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X GET "http://localhost:8090/api/books"

Thus, when you retrieve the list of books again, you will see in the logs:

Cache entry for key 'SimpleKey []' found in cache 'allBooks'

Get a Single Book

When retrieving a single book, on the other side, the book is retrieved from the Coherence cache
right away.

Get a single book

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X GET "http://localhost:8090/api/books/1"

You will see something like:

Cache entry for key '1' found in cache 'books'

Let’s evict the book from the Coherence cache:

Evict book with id 1 from the Coherence Cache

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X DELETE "http://localhost:8090/api/books/1"

Now, when you retrieve the book again, it will be retrieved from the persistence store instead. Let’s
do something more interesting. When retrieving a single book we added a special case to the

90

business service, where the retrieval of a book with id 42 will cause a BusinessException to be
thrown.

Get a single book throwing a business exception

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X GET "http://localhost:8090/api/books/42"

As you may notice, an Internal Server Error (HTTP status 500) is returned to you. Additionally, a
BusinessException was thrown and handled by a Resilience4j fallback method.

Resilience4j selects fallback methods based on the specificity of the thrown
Exceptions in relation to the exception declared in the fallback method. Thus, if
you have multiple fallback methods, the method with the most specific exception
is being chosen. Furthermore, it is important to know that expected exceptions
(e.g. Business Exceptions) that you have included in the list of ignoreExceptions via
application.yaml:

• resilience4j.circuitbreaker.configs.*.ignoreExceptions

will also trigger the execution of fallBack methods, but it will not change the state
of the circuit breaker.

Next, we will first shut down the Coherence server, and then we try to retrieve a single book with id
1. As you see, the JSON response is still the same (The book data is returned). However, when you
look at the logs, you will see:

getBook fallback method (For Throwable) was called: Unable to locate ProxyService
'ExtendTcpCacheService' ...

So basically, the CacheManager was unable to connect to the Coherence instance and therefore the
Circuit Breaker kicked in, calling the fallback method instead, and thus returning the Book not from
the cache but from the persistence store.

7.4.1.2. Monitoring the Circuit Breaker

Spring Boot and Resilience4j also provide facilities to monitor the state of the Circuit Breaker via
Spring Boot’s health-endpoint as well as its circuit breaker events endpoint:

• localhost:8090/actuator/health

• localhost:8090/actuator/circuitbreakerevents/coherence

91

http://localhost:8090/actuator/health
http://localhost:8090/actuator/circuitbreakerevents/coherence

Spring Boot Health Endpoint

{
 "status":"UP",
 "components":{
 "circuitBreakers":{
 "status":"UNKNOWN",
 "details":{
 "coherence":{
 "status":"CIRCUIT_OPEN",
 "details":{
 "failureRate":"100.0%",
 "failureRateThreshold":"5.0%",
 "slowCallRate":"0.0%",
 "slowCallRateThreshold":"100.0%",
 "bufferedCalls":3,
 "slowCalls":0,
 "slowFailedCalls":0,
 "failedCalls":3,
 "notPermittedCalls":8,
 "state":"OPEN"
 }
 }
 }
 },
 "db":{
 "status":"UP",
 "details":{
 "database":"HSQL Database Engine",
 "validationQuery":"isValid()"
 }
 },
 "diskSpace":{
 "status":"UP",
 "details":{
 "total":2000796545024,
 "free":1490744430592,
 "threshold":10485760,
 "exists":true
 }
 },
 "ping":{
 "status":"UP"
 }
 }
}

92

For demonstrating purposes we enabled the relevant health endpoints via Spring
Boot configuration in application.yaml:

management.endpoints.web.exposure.include: "*"
management.endpoint.health.show-details: always

You may not want to do this in production. This is solely for demonstration
purposes, especially as no security is configured for this application.

7.4.1.3. Add Resilience4j Dependencies

In order to use Resilience4j in your Coherence Spring project with Spring Boot, you need to add the
following dependencies:

Example 9. Resilience4j Spring Boot Dependency

Maven

<dependency>
 <groupId>io.github.resilience4j</groupId>
 <artifactId>resilience4j-spring-boot2</artifactId>
 <version>1.7.1</version>
</dependency>

Gradle

implementation("io.github.resilience4j:resilience4j-spring-boot2:1.7.1")

7.4.1.4. Resilience4j Annotations

In order to add circuit-breaker capabilities to our @Cacheable business methods in
DefaultBookService, we simply add the @CircuitBreaker annotations, e.g.:

@Cacheable("allBooks")
@CircuitBreaker(name = "coherence", fallbackMethod = "getAllBooksFallback")
@Override
public List<Book> getAllBooks() {
 ...
}

The key is the specified fallback method: whenever an exception occurs, the fallback method is
being executed. You can have multiple fallback methods, specifying different exception types.
Resilience4j will then select the fallback methods based on the specificity of the thrown exception.

93

When dealing with fallback method, it may at times be necessary to call other
methods of the same services that you expect to be proxied, e.g. have applied
annotations etc. However, when calling other methods in the same service, you are
calling those methods without the relevant AOP aspects applied to them. You may
either need to refactor those methods into another Spring bean or can actually
inject the same service into the service. This type of injection call self injection or
self autowiring has been supported since Spring 4.3.

7.5. Configure Hibernate Second-Level Caching
Spring’s cache abstraction is not your only option with regard to caching. Another option is to use
Hibernate’s Second-Level cache support.

When using only Hibernate’s second-level cache without the requirement of using Coherence for
non-Hibernate application needs, you may want to disable Coherence’s auto-configuration support
for Spring Boot as it is not needed:

Disable CoherenceAutoConfiguration

@SpringBootApplication(exclude=CoherenceAutoConfiguration.class)
public class HibernateApplication {
 public static void main(String[] args) {
 SpringApplication.run(HibernateApplication.class, args);
 }
}

In order to configure Hibernate Second-Level Caching for Coherence using Spring Boot, you simply
have to set the Hibernate property hibernate.cache.region.factory_class to
com.oracle.coherence.hibernate.cache.CoherenceRegionFactory.

Your Spring Boot application.yaml file may look like the following:

RegionFactory Configuration using YAML

spring:
 application:
 name: Your Spring Boot App
 jpa:
 properties:
 hibernate.cache.region.factory_class:
com.oracle.coherence.hibernate.cache.CoherenceRegionFactory ①
 hibernate.cache.use_query_cache: true
 hibernate.cache.use_second_level_cache: true
 hibernate.format_sql: true
 hibernate.generate_statistics: true
 hibernate.show_sql: true
 hibernate.use_sql_comments: false
...

94

https://stackoverflow.com/questions/5152686/self-injection-with-spring
https://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#caching

① Configuring the CoherenceRegionFactory

For more detailed information please see the Caching chapter of the Hibernate reference
documentation.

7.5.1. Hibernate Second Level Cache Example

The Coherence Spring source code repository also provides an example application, illustrating the
Coherence support for Hibernate’s Second Level caching using Spring Boot.

The example application has 1 REST endpoint that can persist, retrieve and delete a Plant object
with taxonomic properties such as the genus and species.

Example of a Plant JSON response

 {"id": 1, "genus": "Sabal", "species": "minor", "commonName": "Dwarf palmetto"}

7.5.1.1. Run the Hibernate Application

First, let’s build the application:

Build the Coherence Server instance

 $./mvnw clean package -pl samples/hibernate-cache-demo

Next, run the application:

Run the Spring Boot application

 $ java -jar samples/hibernate-cache-demo/target/hibernate-cache-demo-4.0.0.jar

The application will be available on port 9090.

Add a plant

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X POST --data '{"genus": "Sabal", "species": "minor", "commonName": "Dwarf
palmetto"}' \
 "http://localhost:9090/plants"

List all plants

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X GET "http://localhost:9090/plants"

95

https://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#caching
https://github.com/coherence-community/coherence-spring/tree/main/samples/hibernate-cache-demo
https://spring.io/projects/spring-boot

Get a single plant

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X GET "http://localhost:9090/plants/1"

Delete a plant

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X DELETE "http://localhost:9090/plants/1"

When retrieving a single plant repeatedly, you will see no SQL printed to the console. Instead, the
plant is returned from the second level cache as illustrated by the printed out cache statistics.

Hibernate Cache Statistics

2021-06-28 16:12:42.545 INFO 29022 --- [nio-9090-exec-7]
i.StatisticalLoggingSessionEventListener : Session Metrics {
27579 nanoseconds spent acquiring 1 JDBC connections;
0 nanoseconds spent releasing 0 JDBC connections;
0 nanoseconds spent preparing 0 JDBC statements;
0 nanoseconds spent executing 0 JDBC statements;
0 nanoseconds spent executing 0 JDBC batches;
0 nanoseconds spent performing 0 L2C puts;
1587296 nanoseconds spent performing 1 L2C hits;
0 nanoseconds spent performing 0 L2C misses;
0 nanoseconds spent executing 0 flushes (flushing a total of 0 entities and 0
collections);
0 nanoseconds spent executing 0 partial-flushes (flushing a total of 0 entities and 0
collections)
}

In order to also cache the results of query executions, you must provide query hints to Hibernate.
The PlantRepository class has a custom query using such a hint for illustration purposes:

Using Query Hints

@QueryHints(@QueryHint(name = org.hibernate.annotations.QueryHints.CACHEABLE, value =
"true"))
@Query("select p from Plant p")
List<Plant> getAllPlantsCacheable();

You can see the cache being used by retrieving the list of plants with an additional request
parameter use-cache:

96

List all plants

curl -i \
 -H "Accept: application/json" \
 -H "Content-Type:application/json" \
 -X GET "http://localhost:9090/plants?use-cache=true"

7.6. Spring Session Support
Coherence Spring also provides support for Spring Session. This includes auto-configuration
support as well as a set of Coherence-specific configuration properties. Before you continue, please
consider reading the chapter on Coherence Spring Session first.

In order to activate Spring Session support for Spring Boot, you must have the following
dependencies added to your project:

Example 10. Add Coherence Spring Session Support

Maven

<dependencies>
 <dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-boot-starter</artifactId>
 <version>4.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-session</artifactId>
 <version>4.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.oracle.coherence.ce</groupId>
 <artifactId>coherence</artifactId>
 <version>23.03</version>
 </dependency>
</dependencies>

Gradle

dependencies {
 compile("com.oracle.coherence.spring:coherence-spring-boot-starter:4.0.0")
 compile("com.oracle.coherence.spring:coherence-spring-session:4.0.0")
 compile("com.oracle.coherence.ce:coherence:23.03")
}

Basically, adding the coherence-spring-session dependency will activate the

97

CoherenceSpringSessionAutoConfiguration class. Auto-configuration will back-off in certain
situations:

• Set property coherence.spring.session.enabled to false

• Define spring.session.store-type. Any value will deactivate auto-configuration.

The following Coherence-specific configuration properties are available:

Table 2. Coherence Configuration Properties

Key Default Value Description

coherence.spring.session.enable
d

false Set to true to enable Spring
Session support

coherence.spring.session.map-
name

spring:session:sessions Name of the map used to store
sessions

coherence.spring.session.flush-
mode

ON_SAVE Sessions flush mode.
Determines when session
changes are written to the
session store.

coherence.spring.session.save-
mode

ON_SET_ATTRIBUTE The session save mode
determines how session
changes are tracked and saved
to the session store.

7.7. Coherence Messaging Support
Support for injecting Coherence Publishers is enabled automatically by adding the coherence-
spring-boot-starter dependency. By default, base package to scan for @CoherencePublisher
annotated interfaces is derived from the main class annotated with @SpringBootApplication. Base
package can be overridden by annotating configuration class with @CoherencePublisherScan as
described at Messaging with Coherence Topics.

7.8. Coherence Metrics
By adding the coherence-spring-boot-starter and com.oracle.coherence.ce:coherence-micrometer
dependencies auto-configuration will register CoherenceMicrometerMetrics and publish Coherence
Metrics under the coherence. name.

To disable the auto-configured Coherence metrics even when coherence-micrometer module is on
the classpath, set the following property:

98

https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherencePublisher.html
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/annotation/CoherencePublisherScan.html
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206//manage/using-coherence-metrics.html#GUID-98DD26E5-48C1-461A-9599-5FA607636DE7
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206//manage/using-coherence-metrics.html#GUID-98DD26E5-48C1-461A-9599-5FA607636DE7

application.yaml

management:
 metrics:
 enable:
 coherence: false

7.9. Spring Data Support
Coherence Spring’s support for Spring Data also contain auto-configuration support for Spring
Boot. The auto-configuration is activated as soon as the Coherence Spring Data dependency is
added to your Spring Boot project.

Example 11. Add Coherence Spring Data Support

Maven

<dependencies>
 <dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-boot-starter</artifactId>
 <version>4.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-data</artifactId>
 <version>4.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.oracle.coherence.ce</groupId>
 <artifactId>coherence</artifactId>
 <version>23.03</version>
 </dependency>
</dependencies>

Gradle

dependencies {
 compile("com.oracle.coherence.spring:coherence-spring-boot-starter:4.0.0")
 compile("com.oracle.coherence.spring:coherence-spring-data:4.0.0")
 compile("com.oracle.coherence.ce:coherence:23.03")
}

There is no need to add the @EnableCoherenceRepositories annotation, as the Coherence Spring Data
auto-configuration support, will automatically detect any Coherence repositories. In fact, adding
@EnableCoherenceRepositories to your Spring Boot project, will cause auto-configuration to back-off.

99

Auto-configuration can also be de-activated by setting environment property
coherence.spring.data.repositories.enabled to false.

100

Chapter 8. Coherence Spring Cloud Config
This section explains how to configure Coherence using Spring Cloud Config.

8.1. Overview
Spring Cloud Config provides support for externalized configuration in distributed systems. It
integrates seamlessly with Spring Boot applications and allows you to externalize / centralize
critical application properties. Spring Cloud Config provides numerous storage backends for your
configuration data and as part of Coherence Spring we also provide a backend for Oracle
Coherence.

 Please familiarize yourself with the Spring Cloud Config reference documentation.

In this chapter we will cover two aspects of Coherence-specific support for Spring Cloud Config:

• Configure Coherence and its Spring support using Spring Cloud Config

Let’s get started with an example to show the general functioning of Spring Cloud Config.

8.2. Demo
This demo is essentially the same as is used in the Quickstart chapter. However, we externalize
some Coherence configuration using Spring Cloud Config. The source code for the demo is part of
the Coherence Spring source code repository. Therefore, to get started, please clone its repository:

Clone the Spring Cloud Config demo project

 $ git clone https://github.com/coherence-community/coherence-spring.git
 $ cd coherence-spring

You now have checked out all the code for Coherence Spring! The relevant demo code for the
Spring Cloud Config demo is under coherence-spring-samples/coherence-spring-cloud-config-demo/.
The demo consists of 2 Maven modules:

• coherence-spring-cloud-config-demo-server: Spring Cloud Config Server implementation

• coherence-spring-cloud-config-demo-app: Main application

The Config Server is essentially using 2 dependencies:

101

https://spring.io/projects/spring-cloud-config/
https://docs.spring.io/spring-cloud-config/docs/current/reference/html/
https://github.com/coherence-community/coherence-spring/

Maven

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId> ①
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId> ②
</dependency>

① Spring Cloud Config Server dependency

② Provides rudimentary security for the exposed configuration REST endpoints using Spring
Security

The demo client on the other hand will use the following dependencies:

Maven

<dependency>
 <groupId>com.oracle.coherence.spring</groupId>
 <artifactId>coherence-spring-boot-starter</artifactId> ①
 <version>{coherence-spring.version}</version>
</dependency>
<dependency>
 <groupId>com.oracle.coherence.ce</groupId>
 <artifactId>coherence</artifactId> ②
 <version>{coherence.version}</version>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId> ③
</dependency>

① Provides all integration code, caching + autoconfiguration support

② The Oracle Coherence dependency

③ The dependency to integrate with the Spring Cloud Config server

We made the decision to not automatically bring in the Coherence dependencies.
The main reason is that users can specify the version they need, either the Oracle
Coherence CE (OSS) or the commercial version.

8.2.1. Configure the Demo Application

In order to run the demo, we first need to create a Git repository that will contain the configuration
data.

102

https://spring.io/projects/spring-security/
https://spring.io/projects/spring-security/

Set up the Config Data

 $ cd /path/to/git/repo
 $ mkdir coherence-spring-config-repository
 $ cd coherence-spring-config-repository
 $ git init

Add a properties file called config-client.properties:

config-client.properties

 coherence.logging.severity-level=6 ①
 coherence.logging.destination=slf4j ②

 coherence.properties.coherence.cluster=Demo Cluster ③
 coherence.properties.coherence.member=Demo Cluster Member ④
 coherence.properties.coherence.management.remote=true ⑤
 coherence.properties.coherence.management=all ⑥
 coherence.properties.coherence.management.report.autostart=true ⑦
 coherence.properties.coherence.reporter.output.directory=/path/to/reports/ ⑧
 coherence.properties.coherence.management.report.configuration=/reports/report-
all.xml ⑨

① -1 emits no log messages, 9 emits the most

② Specifies the logger e.g. stdout, log4j, log4j2, slf4j

③ The name of the cluster

④ The name of the cluster member

⑤ Specifies whether this cluster node exposes its managed objects to remote MBean server. true or
false

⑥ none means no MBean server is instantiated. all enables management of both local and remotely
manageable cluster nodes.

⑦ true or false (default) Specifies whether the Reporter automatically starts when the node starts.

⑧ The output directory for generated reports. By default, reports are saved reports to the directory
from which the cluster member starts.

⑨ You can control which reports are generated by specifying a different report group
configuration file. The pre-defined reports are located at coherence-23.03.jar/reports

For more options please see the following three chapters in the official Oracle Coherence reference
guide:

• Operational Configuration Elements

• System Property Overrides

• Using Oracle Coherence Reporting

103

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206//develop-applications/operational-configuration-elements.html
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206//develop-applications/system-property-overrides.html
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.2206//manage/using-oracle-coherence-reporting.html

8.2.2. Run the Demo Application

Please execute the following:

Start the Spring Cloud Config Server

 $./mvnw clean package -pl :coherence-spring-cloud-config-demo-server
 $ cd coherence-spring-samples/coherence-spring-cloud-config-demo/coherence-spring-
cloud-config-demo-server/target
 $ java -jar coherence-spring-cloud-config-demo-server-4.0.0.jar \n
 --spring.cloud.config.server.git.uri=file:///path/to/git/repo

Start the Coherence Spring Application

 $./mvnw clean package -pl :coherence-spring-cloud-config-demo-app
 $ cd coherence-spring-samples/coherence-spring-cloud-config-demo/coherence-spring-
cloud-config-demo-app/target
 $ java -jar coherence-spring-cloud-config-demo-app-4.0.0.jar

Feel free to change configuration settings and see, once you restart the apps, how the behavior of
the Coherence cluster changes.

8.3. Use Spring Cloud Config Server to Configure
Coherence
The previously discussed demo application illustrated the main concepts of using Spring Cloud
Config Server as a configuration backend for Oracle Coherence. For a general understanding of
Spring Cloud Config Server, please consult the respective reference documentation.

Coherence Spring is essentially unaware of Spring Cloud Config Server. Coherence Spring merely
takes advantage of Spring Boot’s configuration facilities. The main integration point for
configuration between Spring and Oracle Coherence is the SpringSystemPropertyResolver class,
which makes the properties of Spring’s Environment available to Oracle Coherence.

When using Spring Boot (and not just plain Spring Framework), we also provide the
CoherenceProperties class. It provides means to expose Coherence Spring configuration options in a
type-safe manner, to provide code completion via your IDE etc.

 Providing dedicated CoherenceProperties support is work in progress.

Behind the scenes using CoherenceProperties.getCoherencePropertiesAsMap() will translate the
explicit Spring Boot properties into the property format used by Oracle Coherence. It is important
to note that you can always provide ANY Oracle Coherence property as well.

For instance the following properties are equivalent:

104

https://docs.spring.io/spring-cloud-config/docs/current/reference/html/
https://spring.coherence.community/4.0.0/refdocs/api/com/oracle/coherence/spring/configuration/support/SpringSystemPropertyResolver.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/core/env/Environment.html

Equivalent Properties

 coherence.logging.severity-level=5
 coherence.logging.destination=log4j

 coherence.log.level=5
 coherence.log=log4j

 Please also see Coherence Support of the Spring Boot ConfigData API.

105

	Coherence Spring Reference Documentation
	Table of Contents
	Legal
	Chapter 1. Coherence Spring Documentation
	1.1. About the Documentation
	1.2. Getting Help
	1.3. What is new?
	1.4. First Steps

	Chapter 2. Quickstart
	2.1. How to Run the Demo
	2.2. Interacting with the Cache
	2.3. Behind the Scenes

	Chapter 3. Coherence Spring Core
	3.1. Getting Started
	3.2. Bootstrapping Coherence
	3.3. Using the Default Session
	3.4. Configure Multiple Sessions
	3.5. Session Configuration Bean Properties
	3.6. Dependency Injection
	3.6.1. Injecting NamedMap and NamedCache
	3.6.1.1. Type Conversion of NamedMap and NamedCache
	3.6.1.2. Specify the Map/Cache Name
	3.6.1.3. Specify the Owning Session Name

	3.6.2. Injecting AsyncNamedMap & AsyncNamedCache
	3.6.3. Injecting Views (CQC)
	3.6.3.1. Specify a View Filter
	3.6.3.2. Specify a View Transformer

	3.6.4. Injecting a Session
	3.6.4.1. Specify a Session Name

	3.6.5. Injecting NamedTopic
	3.6.5.1. Injecting NamedTopic
	3.6.5.2. Injecting a NamedTopic Publisher
	3.6.5.3. Injecting a NamedTopic Subscriber

	3.7. Events
	3.7.1. MapEvent Listeners
	3.7.1.1. MapEvent Observer Methods
	3.7.1.2. Receive Specific Event Types
	3.7.1.3. Filtering Events
	3.7.1.4. Transforming Events

	3.7.2. Coherence Event Interceptors
	3.7.2.1. Event Types
	3.7.2.2. Coherence Lifecycle Events
	3.7.2.3. Session Lifecycle Events
	3.7.2.4. ConfigurableCacheFactory Lifecycle Events
	3.7.2.5. Cache Lifecycle Events
	3.7.2.6. Entry Events
	3.7.2.7. EntryProcessor Events
	3.7.2.8. Partition Level Transaction Events
	3.7.2.9. Partition Transfer Events
	3.7.2.10. Unsolicited Commit Events

	3.8. Filter Binding Annotations
	3.8.1. Create the filter binding annotation
	3.8.2. Create the FilterFactory
	3.8.3. Annotate the Injection Point

	3.9. Extractor Binding Annotations
	3.9.1. Create the extractor binding annotation
	3.9.2. Create the ExtractorFactory
	3.9.3. Annotate the Injection Point

	3.10. Messaging with Coherence Topics
	3.10.1. Define Publishers - @CoherencePublisher
	3.10.2. Reactive and Non-Blocking Method Definitions
	3.10.2.1. Mono Value and Return Type
	3.10.2.2. Reactor Flux Value and Return Type
	3.10.2.3. Future Return Type

	3.10.3. Define Subscribers - @CoherenceTopicListener
	3.10.4. Method Parameter Bindings
	3.10.5. Committing Messages
	3.10.5.1. Default Commit Behaviour
	3.10.5.2. Setting Commit Strategy
	3.10.5.3. Forwarding Messages with @SendTo

	3.11. Cache Store
	3.11.1. JPA Repository CacheStore Demo
	3.11.1.1. Data Model
	3.11.1.2. Writing a JPA Repository CacheStore
	3.11.1.3. Embedded Coherence
	3.11.1.4. Running the Embedded Sample
	3.11.1.5. Using Coherence*Extend
	3.11.1.6. Inspecting the Database

	Chapter 4. Coherence Spring Cache
	4.1. Introduction
	4.2. Configuring Coherence Cache for Spring
	4.3. Coherence Caches and Locking

	Chapter 5. Coherence Spring Session
	5.1. Getting Started
	5.2. POF Serialization
	5.3. Spring Session Sample
	5.3.1. Start Spring Session with Embedded Coherence Instances
	5.3.2. Spring Session with Remote Coherence Instances
	5.3.3. Accessing the REST Endpoints
	5.3.4. Spring Session Actuator
	5.3.5. Generate Docker Image

	5.4. Session Expiration Strategies

	Chapter 6. Coherence Spring Data
	6.1. Introduction
	6.2. Features
	6.3. Getting Started
	6.4. Defining Repositories
	6.4.1. Identifying the Coherence NamedMap

	6.5. Mapping Entities
	6.6. Using the Repository
	6.6.1. Finder Queries

	6.7. Projections
	6.7.1. Interface-based Projections
	6.7.2. Closed Projections
	6.7.3. Open Projections
	6.7.4. Nullable Wrappers
	6.7.5. Class-based Projections (DTOs)
	6.7.6. Dynamic Projections

	Chapter 7. Coherence Spring Boot
	7.1. Getting Started
	7.2. Using Coherence with Spring Boot
	7.3. Support of the Spring Boot ConfigData API
	7.4. Caching with Spring Boot
	7.4.1. Configure Circuit Breakers with Resilience4j
	7.4.1.1. Running the Example
	7.4.1.2. Monitoring the Circuit Breaker
	7.4.1.3. Add Resilience4j Dependencies
	7.4.1.4. Resilience4j Annotations

	7.5. Configure Hibernate Second-Level Caching
	7.5.1. Hibernate Second Level Cache Example
	7.5.1.1. Run the Hibernate Application

	7.6. Spring Session Support
	7.7. Coherence Messaging Support
	7.8. Coherence Metrics
	7.9. Spring Data Support

	Chapter 8. Coherence Spring Cloud Config
	8.1. Overview
	8.2. Demo
	8.2.1. Configure the Demo Application
	8.2.2. Run the Demo Application

	8.3. Use Spring Cloud Config Server to Configure Coherence

